
Oracle

NoSQL Database
Run Book

12c Release 1
Library Version 12.1.3.0

Legal Notice

Copyright © 2011, 2012, 2013, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Published 7/14/2014

7/14/2014 Oracle NoSQL Database Run Book Page iii

Table of Contents
Preface .. iv

Conventions Used in This Book ... iv
1. Introduction .. 1
2. Software Monitoring ... 2

System Log File Monitoring .. 2
SNMP and JMX Monitoring ... 3

Monitoring Metrics for Storage Nodes .. 3
Monitoring Metrics for Replication Nodes .. 5
Monitoring Metrics for Administration Nodes ... 9

3. Hardware Monitoring ... 11
Monitoring for Hardware Faults .. 11

The Network .. 11
Correlating Network Failure to NoSQL Log Events 11
Recovering from Network Failure .. 12

Persistent Storage ... 12
Detecting and Correlating Persistent Storage Failures to NoSQL Log
Events .. 13
Resolving Storage Device Failures .. 13
Procedure for Replacing a Failed Persistent Storage Device 16
Example .. 17

Servers ... 23
Detecting and Correlating Server Failures to NoSQL Log Events 23
Resolving Server Failures ... 23
Terminology Review ... 24
Assumptions ... 26
Replacement Procedure 1: Replace SN with Identical SN 27
Replacement Procedure 2: New SN Takes Over Duties of Removed SN 29
Examples .. 32
Setup .. 32
Example 1: Replace a Failed SN with an Identical SN 36
Example 2: New SN Takes Over Duties of Existing SN 42

A. Third Party Licenses .. 49

7/14/2014 Oracle NoSQL Database Run Book Page iv

Preface
This document describes how to monitor and troubleshoot Oracle NoSQL Database (Oracle
NoSQL Database).

This book is aimed at the systems administrator responsible for managing an Oracle NoSQL
Database installation.

Conventions Used in This Book

The following typographical conventions are used within this manual:

Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Note

Finally, notes of special interest are represented using a note block such as this.

7/14/2014 Oracle NoSQL Database Run Book Page 1

Chapter 1. Introduction
There are several important aspects to maintaining a highly available NoSQL Database that
can service requests with predictable latency and throughput. This book outlines these
aspects and describes how to maintain NoSQL Database to achieve these goals by focusing on
the following topics:

• How to monitor the hardware and software in a NoSQL Database cluster.

• How to detect hardware and software failures.

• How to diagnose a hardware or software failure.

• How to restore a component, or set of components, once a failure has been detected and
resolved.

The following chapters focus on the management and monitoring aspects of the Oracle NoSQL
Database. The purpose here is to monitor, detect, diagnose, and resolve run-time issues that
may occur with the NoSQL Database and the underlying hardware.

Though the guide briefly touches on guidelines and best practices for the application layer's
role in monitoring and diagnosis, it does not provide any specific guidance as this will be
dictated by the application and its requirements as set forth by the business.

7/14/2014 Oracle NoSQL Database Run Book Page 2

Chapter 2. Software Monitoring
Being a distributed system, the Oracle NoSQL Database is composed of several software
components and each expose unique metrics that can be monitored, interpreted, and utilized
to understand the general health, performance, and operational capability of the NoSQL
Database cluster.

This section focuses on best practices for monitoring the Oracle NoSQL software components.
While there are several software dependencies for the Oracle NoSQL Database itself (for
example, Java virtual machine, operating system, NTP), this section focuses solely on the
NoSQL components.

There are three basic mechanisms for monitoring the health of the NoSQL Database:

• System Log File Monitoring – Oracle NoSQL Database uses the java.util.logging package to
write all trace, information, and error messages to the log files for each component of the
store. These files can be parsed using the typical log file probing mechanism supported by
the leading system management solutions.

• System Monitoring Agents – Oracle NoSQL Database publishes MIBs for integration with SNMP
based monitoring solutions as well as JMX Management Beans for integration with JMX based
monitoring solutions.

• Application Monitoring – A good proxy for the “health” of the NoSQL Database rests with
application level metrics. Metrics like average and 90th percentile response times, average
and 90th percentile throughput, as well average number of timeout exceptions encountered
from NoSQL API calls are all potential indicators that something may be wrong with a
component in the NoSQL cluster. In fact, sampling these metrics and looking for deviations
from mean values can be the best way to know that something may be wrong with your
environment.

The following sections discuss details of each of these monitoring techniques and illustrate
how each of them can be utilized to detect failures in NoSQL Database components.

System Log File Monitoring

The Oracle NoSQL Database is composed of the following components, and each component
produces log files that can be monitored:

• Replication Nodes – Service read and write requests from API calls. Replication nodes for a
particular shard are laid out on different storage nodes (physical servers) by the topology
manager, so the log files for the nodes in each shard are spread across multiple machines.

• Storage Node Agents – Manage the replication nodes that are running on each storage
node. The SNA maintains its own log regarding the state of each replication node it is
managing. You can think of the SNA log as a high level log of the replication node activity on
a particular storage node.

• Admin Nodes – Administrative nodes handle the execution of commands from the
administrative command line interface. Long running plans are also staged from the

Library Version 12.1.3.0 Software Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 3

administrative nodes. Administrative nodes also maintain a consolidated log of all the other
logs in the Oracle NoSQL cluster.

All of the above mentioned log files can be found in the following directory structure KVROOT/
kvstore/log on the machine where the component is running. The following steps can be
used to find the machines that are running the components of the cluster:

1. java -jar kvstore.jar ping -host <any machine in the cluster> -port <the port number used
to initialize the KVStore>

2. Each storage node (snXX) is listed in the output of the ping command, along with a list of
replication nodes (rgXX-rnXX) running on the host listed in the ping output. XX denotes
the unique number assigned to that component by NoSQL Database. For replication nodes,
rg denotes the shard number and stands for replication group, while rn denotes the
replication node number within that shard.

3. Admin Nodes – Identifying the nodes in the cluster that are running administrative services
is a bit more challenging. To identify these nodes, a script would run ps axww on every
host in the cluster and grep for kvstore.jar and -class Admin.

The Oracle NoSQL Database maintains a single consolidated log of every node in the cluster,
and this can be found on any of the nodes running an administrative service. While this is a
convenient and easy single place to monitor for errors, it is not 100% guaranteed. The single
consolidated view is aggregated by getting log messages over the network, and transient
network failures, packet loss, and high network utilization can cause this consolidated log to
either be out of date, or have missing entries. Therefore, we recommend monitoring each
host in the cluster as well as monitoring each type of log file on each host in the cluster.

Generally speaking, any log message with a level of SEVERE should be considered a potentially
critical event and worthy of generating a systems management notification. The sections in
the later part of this document illustrate how to correlate specific SEVERE exceptions with
hardware component failure.

SNMP and JMX Monitoring

Oracle NoSQL Database is also monitored through SNMP or JMX based system management
tools. For SNMP based tools, the Oracle NoSQL MIB is found in lib directory of the installation
along with the JAR files for the product.

Monitoring Metrics for Storage Nodes

• snServiceStatus – The current status of the storage node agent running on the host. The
storage node agent manages all the replication nodes running on the storage node (host).
The textual representation along with the enumeration ID are shown below:

• starting (1) – The storage node agent is booting up.

• waitingForDeploy (2) – The storage node agent is waiting for the initial deploy-SN
command to be run from the admin console.

• running(3) – The storage node agent is running.

Library Version 12.1.3.0 Software Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 4

• stopping(4) – The storage node agent is in the process of shutting down. It may be in the
process of shutting down replication nodes that it manages.

• stopped(5) – An intentional clean shutdown.

• errorRestarting(6) – Although this state exists in the category, it is typically never seen for
storage node agents.

• errorNoRestart(7) – Although this state exists in the category, it is typically never seen for
storage node agents.

• unreachable(8) – The storage node agent is unreachable by the admin service.

• snHostName – The name of the host where the storage node agent has been deployed.

• snRegistryPort – The port being used by the storage node agent for registering RMI objects.

• snHAHostName – If the HA host name has been configured through the boot parameters then
this is returned, otherwise the name of the host running the storage node agent is returned.
This represents the network interface name that is utilized by the replication subsystem for
internode communication.

• snHaPortRange – The range of ports that replication nodes use to communicate amongst
themselves.

• snStoreName – The name of the KVStore that this storage node agent is servicing.

• snRootDirPath – The fully qualified path to the root of the directory structure where the
NoSQL database installation files exist.

• snAdminHttpPort – This parameter is passed from the storage node agent to the admin. The
admin then uses this port to list on for HTTP requests.

• snLogFileCount – A logging config parameter that represents the maximum number of log
files that are retained by the SNA.

• snLogFileLimit – A logging config parameter that represents the maximum size of a single log
file in bytes.

• snCapacity – The current capacity of the storage node. This parameter essentially describes
the number of persistent storage devices on the storage node and is typically set at store
initialization time, but can be modified by the administrator if the hardware configuration
is changed after the store is initialized.

• snMountPoints – A list of one or more fully qualified paths to the data files that reside on
this storage node.

• snMemory – The current memory configuration for this storage node in megabytes.
This parameter is typically set at store initialization time, but can be modified by the
administrator if the hardware configuration is changed after the store is initialized.

Library Version 12.1.3.0 Software Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 5

• snCPUs – The current number of CPUs configured for this storage node. This parameter is
typically set at store initialization time, but can be modified by the administrator if the
hardware configuration is changed after the store is initialized.

Monitoring Metrics for Replication Nodes

• repNodeShardNumber – The store-wide unique shard (replication group) number that the
replication node runs within. This is the number that directly follows the rg specifier when
a replication node is displayed in a show topology command such as rg1-rn1. In this case,
the repNodeShardNumber would be 1.

• repNodeNumber – The shard (replication group) local unique replication node number. This
is the number that directly follows the rn specifier when a replication node is displayed in a
show topology command such as rg1-rn1. In this case, the repNodeNumber would be 1.

• repNodeServiceStatus – The current status of the replication node. They are as follows:

• starting (1) – The storage node agent is booting up.

• waitingForDeploy (2) – The replication node is waiting to be registered with the storage
node agent.

• running(3) – The replication node is running.

• stopping(4) – The replication node is in the process of shutting down.

• stopped(5) – An intentional clean shutdown.

• errorRestarting(6) – The replication node is restarting after encountering an error.

• errorNoRestart(7) – Service is in an error state and will not be automatically restarted.
Administrative intervention is required.

• unreachable(8) – The replication node is unreachable by the admin service.

The following metrics can be monitored to get a sense for the performance of each replication
node in the cluster. There are two flavors of metric granularity:

• Interval – By default, each node in the cluster will sample performance data every 60
seconds and aggregate the metrics to this interval. This interval may be changed using
the admin plan change-parameters and supplying the statsInterval parameter with
a new value in seconds (see http://docs.oracle.com/cd/NOSQL/html/AdminGuide/
setstoreparams.html#changeparamcli).

• Cumulative – Metrics that have been collected and aggregated since the node has started.

The metrics are further broken down into measurements for operations over single keys versus
operations over multiple keys.

http://docs.oracle.com/cd/NOSQL/html/AdminGuide/setstoreparams.html#changeparamcli
http://docs.oracle.com/cd/NOSQL/html/AdminGuide/setstoreparams.html#changeparamcli

Library Version 12.1.3.0 Software Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 6

Note

All timestamp metrics are in UTC, therefore appropriate conversion to a time zone
relevant to where the store is deployed is necessary.

• repNodeIntervalStart – The start timestamp of when this sample of single key operation
measurements were collected.

• repNodeIntervalEnd –The start timestamp of when this sample of single key operation
measurements were collected.

• repNodeIntervalPeriod – The number of milliseconds that the replication has collected
single key operation measurements (repNodeIntervalEnd - repNodeIntervalStart).

• repNodeIntervalTotalOps – Total number of single key operations (get, put, delete)
processed by the replication node in the interval being measured.

• repNodeIntervalThroughput – Number of single key operations (get, put, delete) per second
completed during the interval being measured.

• repNodeIntervalLatMin – The minimum latency sample of single key operations (get, put,
delete) during the interval being measured.

• repNodeIntervalLatMax – The maximum latency sample of single key operations (get, put,
delete) during the interval being measured.

• repNodeIntervalLatAvg – The average latency sample of single key operations (get, put,
delete) during the interval being measured (returned as a string).

• repNodeIntervalLatAvgInt – The average latency sample of single key operations (get, put,
delete) during the interval being measured (returned as an integer).

• repNodeIntervalLatAvgFrac – The fractional part of the average latency sample of single key
operations (get, put, delete) during the interval being measured (returned as an integer).

• repNodeIntervalPct95 – The 95th percentile of the latency sample of single key operations
(get, put, delete) during the interval being measured.

• repNodeIntervalPct99 – The 95th percentile of the latency sample of single key operations
(get, put, delete) during the interval being measured.

• repNodeCumulativeStart – The start timestamp of when the replication started collecting
cumulative performance metrics (all the below metrics that are cumulative).

• repNodeCumulativeEnd – The end timestamp of when the replication ended collecting
cumulative performance metrics (all the below metrics that are cumulative).

• repNodeCumulativeTotalOps – The total number of single key operations that have been
processed by the replication node.

• repNodeCumulativeThroughput – The sustained operations per second of single key
operations measured by this node since it has started.

Library Version 12.1.3.0 Software Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 7

• repNodeCumulativeLatMin – The minimum latency of single key operations measured by this
node since it has started.

• repNodeCumulativeLatMax – The maximum latency of single key operations measured by
this node since it has started.

• repNodeCumulativeLatAvg – The average latency of single key operations measured by this
node since it has started (returned as a string).

• repNodeCumulativeLatAvgInt – The maximum latency of single key operations measured by
this node since it has started (returned as an integer).

• repNodeCumulativeLatAvgFrac – The fractional part of the cumulative average latency of
single key operations (get, put, delete) measured (returned as an integer) by the node since
it has started.

• repNodeCumulativePct95 – The 95th percentile of the latency of single key operations (get,
put, delete) since it has started.

• repNodeCumulativePct99 – The 99th percentile of the latency of single key operations (get,
put, delete) since it has started.

• repNodeMultiIntervalStart – The start timestamp of when this sample of multiple key
operation measurements were collected.

• repNodeMultiIntervalEnd – The end timestamp of when this sample of multiple key
operation measurements were collected.

• repNodeMultiIntervalPeriod – The number of milliseconds that the replication
has collected multiple key operation measurements (repNodeMultiIntervalEnd –
repNodeMultiIntervalStart).

• repNodeMultiIntervalTotalOps – Total number of multiple key operations (execute) processed
by the replication node in the interval being measured.

• repNodeMultiIntervalThroughput – Number of multiple key operations (execute) per second
completed during the interval being measured.

• repNodeMultiIntervalLatMin – The minimum latency sample of multiple key operations
(execute) during the interval being measured.

• repNodeMultiIntervalLatMax – The maximum latency sample of multiple key operations
(execute) during the interval being measured.

• repNodeMultiIntervalLatAvg – The average latency sample of multiple key operations
(execute) during the interval being measured (returned as a string).

• repNodeMultiIntervalLatAvgInt – The average latency sample of multiple key operations
(execute) during the interval being measured (returned as an integer).

• repNodeMultiIntervalLatAvgFrac – The fractional part of the average latency sample of
multiple key operations (execute) during the interval being measured (returned as an
integer).

Library Version 12.1.3.0 Software Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 8

• repNodeMultiIntervalPct95 – The 95th percentile of the latency sample of multiple key
operations (execute) during the interval being measured.

• repNodeMultiIntervalPct99 – The 95th percentile of the latency sample of multiple key
operations (execute) during the interval being measured.

• repNodeMultiIntervalTotalRequests – The total number of multiple key operations (execute)
during the interval being measured.

• repNodeMultiCumulativeStart – The start timestamp of when the replication node started
collecting cumulative multiple key performance metrics (all the below metrics that are
cumulative).

• repNodeMultiCumulativeEnd – The end timestamp of when the replication node started
collecting cumulative multiple key performance metrics (all the below metrics that are
cumulative).

• repNodeMultiCumulativeTotalOps – The total number of single multiple operations that have
been processed by the replication node since it has started.

• repNodeMultiCumulativeThroughput – The sustained operations per second of multiple key
operations measured by this node since it has started.

• repNodeMultiCumulativeTotalRequests – The total number of multiple key operations
measured by this node since it has started.

• repNodeCacheSize – The size in bytes of the replication node's cache of B-tree nodes. This is
calculated using the DBCacheSize utility referred here.

• repNodeConfigProperties - The set of configuration name/value pairs that the replication
node is currently running with.

• repNodeCollectEnvStats – True or false depending on whether the replication node is
currently collecting performance statistics.

• repNodeStatsInterval – The interval (in seconds) that the replication node is utilizing for
aggregate statistics.

• repNodeMaxTrackedLatency – The maximum number of milliseconds for which latency
statistics will be tracked. For example, if this parameter is set to 1000, then any operation
at the repnode that exhibits a latency of 1000 or greater milliseconds is not put into the
array of metric samples for subsequent reporting.

• repNodeJavaMiscParams – The value of the -Xms, -Xmx, and -XX:ParallelGCThreads= as
encountered when the Java VM running this replication node was booted.

• repNodeLoggingConfigProps – The value of the loggingConfigProps parameter as encountered
when the Java VM running this replication node was booted.

• repNodeHeapSize – The current value of –Xmx for this replication node.

Library Version 12.1.3.0 Software Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 9

• repNodeMountPoint – Used only for KVLite.

• repNodeLatencyCeiling – The upper bound (in milliseconds) at which latency samples may be
gathered at this replication node before an alert is generated. For example, if this is set to
3, then any latency sample above 3 generates an alert.

• repNodeThroughputFloor – The lower bound (in operations per second) at which throughput
samples may be gathered at this replication node before an alert is generated. For example,
if this is set to 300,000, then any throughput calculation at this replication node that is
lower than 300,000 operations per seconds generates an alert.

Monitoring Metrics for Administration Nodes

The following metrics are accessible through SNMP and JMX and are intended to be used for
the monitoring of the administrative nodes in the Oracle NoSQL Database cluster.

• adminId – The unique ID for the admin node.

• adminServiceStatus – The status of the administrative service. It can be one of the follows:

• unreachable(0) – The admin node unreachable. This can be due to a network error or the
admin node maybe down.

• starting (1) – The admin node agent is booting up.

• waitingForDeploy (2) – Indicates a bootstrap admin that has not been configured, that is,
it has not been given a store name. Configuring the admin triggers the creation of the
Admin database, and changes its status from "WAITING_FOR_DEPLOY" to "RUNNING".

• running(3) – The admin node is running.

• stopping(4) – The admin node in the process of shutting down.

• stopped(5) – An intentional clean shutdown of the admin node.

• errorRestarting(6) – The storage node tried to start the admin several times without
success and gave up.

• errorNoRestart(7) – Service is in an error state and will not be automatically restarted.
Administrative intervention is required.

• adminHttpPort – The port that the admin is listening for incoming HTTP requests.

• adminLogFileCount – A logging config parameter that represents the maximum number of
log files that are retained by the admin node.

• adminLogFileLimit – A logging config parameter that represents the maximum size of a
single log file in bytes.

• adminPollPeriod – The frequency by which the Admin polls agents (replication node and sna)
for statistics. This polling receives service status changes, performance metrics, and log
messages. This period is reported in units of milliseconds.

Library Version 12.1.3.0 Software Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 10

• adminEventExpiryAge – Tells how long critical events are saved in the admin database. This
value is reported in units of hours.

• adminIsMaster – A Boolean value which indicates whether or not this admin node is the
master node for the admin group.

7/14/2014 Oracle NoSQL Database Run Book Page 11

Chapter 3. Hardware Monitoring
While software component monitoring is central to insuring that high availability service levels
are met, hardware monitoring, fault isolation, and ultimately the replacement of a failed
component and how to recover from that failure are equally important. The following sections
cover guidelines on what to monitor and how to detect potential hardware failures. It also
discusses the replacement procedures of replacing failed hardware components and how to
bring the Oracle NoSQL Database components (that were utilizing the components that were
replaced) back online .

Monitoring for Hardware Faults

There are several different hardware scenarios/failures that are considered when monitoring
the environment for Oracle NoSQL Database. The sections below cover the monitoring of
network, disk, and machine failures as well as the correlation of these failures with log
events in the Oracle NoSQL Database. Finally, it discusses how to recover from these failure
scenarios.

The Network

Monitoring packet loss, round trip average latencies, and network utilization provides
a glimpse into critical network activity that can affect the performance as well as the
ongoing functioning of the Oracle NoSQL Database. There are two critical types of network
activity in the Oracle NoSQL Database. The client driver will utilize Java RMI over TCP/IP
to communicate between the machine running the application, and the machines running
the nodes of the NoSQL Database cluster. Secondly, each node in the cluster must be able to
communicate with each other. Replication nodes will utilize Java RMI over TCP/IP and will
also utilize streams based communication over TCP/IP. Administrative nodes and storage node
agents will only utilize RMI over TCP/IP. The key issue in insuring an operational store that is
able to maintain predictable latencies and throughput is to monitor the health of the network
through which all of these nodes communicate.

The following tools are recommended for monitoring the health of the network interfaces that
the Oracle NoSQL Database relies on:

• Sar, ping, iptraf – These operating system tools display critical network statistics such as #
of packets lost, round trip latency, and network utilization. It is recommended to use ping
in a scripted fashion to monitor round trip latency as well as packet loss and use either sar
or iptraf in a scripted fashion to monitor network utilization. A good rule of thumb is to
raise an alert if network utilization goes above 80%.

• Oracle NoSQL Ping command – The Oracle NoSQL Administrative console contains a ping
command that attempts to contact each node of the cluster. Directions on how to run
and script this command can be found here: http://docs.oracle.com/cd/NOSQL/html/
AdminGuide/cli_command_reference.html#commands_subcommands

Correlating Network Failure to NoSQL Log Events

Network failures that affect the runtime operation of NoSQL Database is ultimately logged
as instances of Java runtime exceptions. Using log file monitoring, the following exception

http://docs.oracle.com/cd/NOSQL/html/AdminGuide/cli_command_reference.html#commands_subcommands
http://docs.oracle.com/cd/NOSQL/html/AdminGuide/cli_command_reference.html#commands_subcommands

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 12

strings are added to a list of regular expressions that are recognized as critical events.
Correlating the timestamps of these events with the timestamps of whatever network
monitoring tool is being utilized.

Note

While searching the log file for any of the exceptions stated below, the log level must
also be checked such that only log levels of SEVERE is considered. These exceptions
are logged at a level of INFO which indicates no errors will be encountered by the
application.

• UnknownHostException – A DNS lookup of a node in the NoSQL Database failed due to
either a misconfigured NoSQL Database or a DNS error. Encountering this error after a
NoSQL cluster has been operational for some time indicates a network failure between the
application and the DNS server.

• ConnectException – The client driver cannot open a connection to the NoSQL Database
node. Either the node is not listening on the port being contacted or the port is blocked by a
firewall.

• ConnectIOException – Indicates a possible handshake error between the client and the
server or an I/O error from the network layer.

• MarshalException – Indicates a possible I/O error from the network layer.

• UnmarshalException – Indicates a possible I/O error from the network layer.

• NoSuchObjectException – Indicates a possible I/O error from the network layer.

• RemoteException – Indicates a possible I/O error from the network layer.

Recovering from Network Failure

In general, the NoSQL Database will retry and recover from network failures and no
intervention at the database level is necessary. It is possible that a degraded level of service
is encountered due to the network failure; however, the failure of network partitions will not
cause the NoSQL Database to fail.

Persistent Storage

One of the most common failure scenarios you can expect to encounter while managing a
deployed Oracle NoSQL Database instance (sometimes referred to as KVStore) is a disk that
fails and needs to be replaced; where the disk is typically a hard disk drive (HDD), or a solid
state drive (SSD). Because HDDs employ many moving parts that are continuously in action
when the store performs numerous writes and reads, moving huge numbers of bytes on and
off the disk, parts of the disk can easily wear out and fail. With respect to SSDs, although the
absence of moving parts makes SSDs a bit less failure prone than HDDs, when placed under
very heavy load, SSDs will also generally fail with regularity. As a matter of fact, when such
stores scale to a very large number of nodes (machines), a point can be reached where disk
failure is virtually guaranteed; much more than other hardware components making up a
node. For example, disks associated with such systems generally fail much more frequently
than the system's mother board, memory chips, or even the network interface cards (NICs).

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 13

Since disk failures are so common, a well-defined procedure is provided for replacing a failed
disk while the store continues to run; providing data availability.

Detecting and Correlating Persistent Storage Failures to NoSQL Log Events

There are many vendor specific tools for detecting the failure of persistent storage devices
as well as SNMP monitoring agents that perform similar functionality. It is beyond the
scope of this book to recommend any vendor specific mechanism or SNMP based monitoring
mechanism. There are however, some general things that can be done to identify a failed
persistent storage device;

Note

Using log file monitoring, the following exception string is to a list of regular
expressions that should be recognized as critical events. Correlating the timestamps of
these events with the timestamps of whatever storage device monitoring tool is being
utilized. When searching the log file for any of the exception stated below, the log
level must also be checked such that only log levels of SEVERE is considered.

• I/O errors in /var/log/messages – Monitoring /var/log/messages for I/O errors indicate that
something is wrong with the device and it may be failing.

• Smartctl – If available, the smartctl tool detects a failure with a persistent storage device
and displays the serial number of the specific device that is failing.

• EnvironmentFailureException – The storage layer of NoSQL Database (Berkeley DB
Java Edition) converts Java IOExceptions detected from the storage device into an
EnvironmentFailureException and this exception is written to the log file.

Resolving Storage Device Failures

The sections below describe that procedure for two common machine configurations.

In order to understand how a failed disk can be replaced while the KVStore is running,
review what and where data is stored by the KVStore; which is dependent on each machine's
disk configuration, as well as how the store's capacity and storage directory location is
configured. Suppose a KVStore is distributed among 3 machines – or storage nodes (SNs) — and
is configured with replication factor (RF) equal to 3, each SN's capacity equal to 2, KVROOT
equal to /opt/ondb/var/kvroot, and store name equal to "store-name". Since the capacity or
each SN is 2, each machine will host 2 replication nodes (RNs). That is, each SN will execute 2
Java VMs and each run a software service (an RN service) responsible for storing and retrieving
a replicated instance of the key/value data maintained by the store.

Suppose in one deployment, the machines themselves (the SNs) are each configured with 3
disks; whereas in another deployment, the SNs each have only a single disk on which to write
and read data. Although the second (single disk) scenario is fine for experimentation and "tire
kicking", that configuration is strongly discouraged for production environments, where it is
likely to have disk failure and replacement. In particular, one rule deployers are encouraged
to follow in production environments is that multiple RN services should never be configured
to write data to the same disk. That said, there may be some uncommon circumstances in
which a deployer may choose to violate this rule. For example, in addition to being extremely

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 14

reliable (for example, a RAID device), the disk may be a device with such high performance
and large capacity that a single RN service would never be able to make use of the disk
without exceeding the recommended 32GB heap limit. Thus, unless the environment consists
of disks that satisfy such uncommon criteria, deployers always prefer environments that allow
them to configure each RN service with its own disk; separate from all configuration and
administration information, as well as the data stored by any other RN services running on the
system.

As explained below, to configure a KVStore use multiple disks on each SN, the storagedir
parameter must be employed to exploit the separate media that is available. In addition to
encouraging deployers to use the storagedir parameter in the multi-disk scenario, this note is
also biased toward the use of that parameter when discussing the single disk scenario; even
though the use of that parameter in the single disk case provides no substantial benefit over
using the default location (other than the ability to develop common deployment scripts). To
understand this, first compare the implications of using the default storage location with a
non-default location specified with the storagedir parameter.

Thus, suppose the KVStore is deployed – in either the multi-disk scenario or the single disk
scenario – using the default location; that is, the storagedir parameter is left unspecified.
This means that data will be stored in either scenario under the KVROOT; which is /opt/
ondb/var/kvroot in the examples below. For either scenario, a directory structure like the
following is created and populated:

 - Machine 1 (SN1) - - Machine 2 (SN2) - - Machine 3 (SN3) -
/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /store-name /store-name /store-name
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env

 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env

 /rg2-rn1 /rg2-rn2 /rg2-rn3
 /env /env /env

Compare this with the structure that is created when a KVStore is deployed to the multi-disk
machines; where each machine's 3 disks are named /opt, /disk1, and/disk2. Assume that the
makebootconfig utility (described in Chapter 2 of the Oracle NoSQL Database Administrator's
Guide, section, "Installation Configuration") is used to create an initial boot config with
parameters such as the following:

> java -jar KVHOME/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -port 5000 \
 -admin 5001 \
 -host <host-ip>
 -harange 5010,5020 \

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 15

 -num_cpus 0 \
 -memory_mb 0 \
 -capacity 2 \
 -storagedir /disk1/ondb/data \
 -storagedir /disk2/ondb/data

With a boot config such as that shown above, the directory structure that is created and
populated on each machine would then be:

 - Machine 1 (SN1) - - Machine 2 (SN2) - - Machine 3 (SN3) -
/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /store-name /store-name /store-name
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env

/disk1/ondb/data /disk1/ondb/data /disk1/ondb/data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env

/disk2/ondb/data /disk2/ondb/data /disk2/ondb/data
 /rg2-rn1 /rg2-rn2 /rg2-rn3
 /env /env /env

In this case, the configuration information and administrative data is stored in a location that
is separate from all of the replication data. Furthermore, the replication data itself is stored
by each distinct RN service on separate, physical media as well. That is, the data stored by a
given member of each replication group (or shard) is stored on a disk that separate from the
disks employed by the other members of the group.

Note

Storing the data in these different locations as described above, provides for failure
isolation and will typically make disk replacement less complicated and less time
consuming. That is, by using a larger number of smaller disks, it is possible to recover
much more quickly from a single disk failure because of the reduced amount of time
it will take to repopulate the smaller disk. This is why both this note and Chapter 2 of
the Oracle NoSQL Database Administrator's Guide, section, "Installation Configuration"
strongly encourage configurations like that shown above; configurations that exploit
separate physical media or disk partitions.

Even when a machine has only a single disk, nothing prevents the deployer from using the
storagedir parameter in a manner similar to the multi-disk case; storing the configuration and
administrative data under a parent directory that is different than the parent(s) under which
the replicated data is stored. Since this non-default strategy may allow to create deployment
scripts that can be more easily shared between single disk and multi-disk systems, some may
prefer this strategy over using the default location (KVROOT); or may simply view it as a good

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 16

habit to follow. Employing this non-default strategy is simply a matter of taste, and provides
no additional benefit other than uniformity with the multi-disk case.

Hence, such a strategy applied to a single disk system will not necessarily make disk
replacement less complicated; because, if that single disk fails and needs to be replaced,
not only is all the data written by the RN(s) unavailable, but the configuration (and admin)
data is also unavailable. As a result, since the configuration information is needed during
the (RN) recovery process after the disk has been replaced, that data must be restored
from a previously captured backup; which can make the disk replacement process much
more complicated. This is why multi-disk systems are generally preferred in production
environments; where, because of sheer use, the data disks are far more likely to fail than the
disk holding only the configuration and other system data.

Procedure for Replacing a Failed Persistent Storage Device

Suppose a KVStore has been deployed to a set of machines, each with 3 disks, using the
'storagedir' parameter as described above. Suppose that disk2 on SN3 fails and needs to be
replaced. In this case, the administrator would do the following:

1. Execute the KVStore administrative command line interface (CLI), connecting via one of
the healthy admin services.

2. From the CLI, execute the following command:

kv-> plan stop-service-service rg2-rn3

This stops the service so that attempts by the system to communicate with that particular
service are no longer necessary; resulting in a reduction in the amount of error output
related to a failure the administrator is already aware of.

3. Remove disk2, using whatever procedure is dictated by the OS, the disk manufacture,
and/or the hardware platform.

4. Install a new disk using the appropriate procedures.

5. Format the new disk to have the same storage directory as before; that is, /disk2/ondb/
var/kvroot

6. From the CLI, execute the following commands; where the verify configuration
command simply verifies that the desired RN is now up and running:

kv-> plan start-service -service rg2-rn3 -wait
kv-> verify configuration

7. Verify that the recovered RN data file(s) have the expected content; that is, /disk2/
ondb/var/kvroot/rg2-rn3/env/*.jdb

In step 2, the RN service with id equal to 3, belonging to the replication group with id2, is
stopped (rg2-rn3). To determine which specific RN service to stop when using the procedure
outlined above, the administrator combines knowledge of which disk has failed on which
machine with knowledge about the directory structure created during deployment of
the KVStore. For this particular case, the administrator has first used standard system

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 17

monitoring and management mechanisms to determine that disk2 has failed on the machine
corresponding to the SN with id equal to 3 and needs to be replaced. Then, given the
directory structure shown previously, the administrator knows that – for this deployment – the
store writes replicated data to disk2 on the SN3 machine using files located under, /disk2b/
data/rg2-rn3/en. As a result, the administrator determined that the RN service with name
equal to rg2-rn3 must be stopped before replacing the failed disk.

In step 6, if the RN service that was previously stopped has successfully restarted when the
verify configuration command is executed, and although the command's output indicates
that the service is up and healthy, it is not necessary that the restarted RN has completely
repopulated the new disk with that RN's data. This is because, it could take a considerable
amount of time for the disk to recover all its data; depending on the amount of data that
previously resided on the disk before failure. The system may encounter additional network
traffic and load while the new disk is being repopulated.

Finally, it should be noted that step 7 is just a sanity check, and therefore optional. That is,
if the RN service is successfully restarted and the verify configuration command reports
RN as healthy, the results of that command is viewed as sufficient evidence for declaring the
disk replacement a success. As indicated above, even if some data is not yet available on the
new disk, that data will continue to be available via the other members of the recovering RN's
replication group (shard), and will eventually be replicated to, and available from, the new
disk as expected.

Example

Below, an example is presented that allows you to gain some practical experience with the
disk replacement steps presented above. This example is intended to simulate the multi-
disk scenario using a single machine with a single disk. Thus, no disks will actually fail or be
physically replaced. But you should still feel how the data is automatically recovered when a
disk is replaced.

For simplicity, assume that the KVStore is installed under /opt/ondb/kv; that is, KVHOME=/
opt/ondb/kv, and that KVROOT=/opt/ondb/var/kvroot; that is, if you have not done so
already, create the directory:

> mkdir -p /opt/ondb/var/kvroot

To simulate the data disks, create the following directories:

> mkdir -p /tmp/sn1/disk1/ondb/data
> mkdir -p /tmp/sn1/disk2/ondb/data

> mkdir -p /tmp/sn2/disk1/ondb/data
> mkdir -p /tmp/sn2/disk2/ondb/data

> mkdir -p /tmp/sn3/disk1/ondb/data
> mkdir -p /tmp/sn3/disk2/ondb/data

Next, open 3 windows; Win_A, Win_B, and Win_C, which will represent the 3 machines (SNs).
In each window, execute the makebootconfig command, creating a different, but similar,
boot config for each SN that will be configured.

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 18

On Win_A

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config1.xml \
 -port 13230 \
 -harange 13232,13235 \
 -admin 13231 \
 -memory_mb 100 \
 -capacity 2 \
 -storagedir /tmp/sn1/disk1/ondb/data \
 -storagedir /tmp/sn1/disk2/ondb/data

On Win_B

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config2.xml \
 -port 13240 \
 -harange 13242,13245 \
 -admin 13241 \
 -memory_mb 100 \
 -capacity 2 \
 -storagedir /tmp/sn2/disk1/ondb/data \
 -storagedir /tmp/sn2/disk2/ondb/data

On Win_C

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config3.xml \
 -port 13250 \
 -harange 13252,13255 \
 -admin 13251 \
 -memory_mb 100 \
 -capacity 2 \
 -storagedir /tmp/sn3/disk1/ondb/data \
 -storagedir /tmp/sn3/disk2/ondb/data

This will produce 3 configuration files:

/opt/ondb/var/kvroot
 /config1.xml
 /config2.xml
 /config3.xml

Using the different configurations just generated, start a corresponding instance of the
KVStore storage node agent (SNA) from each window.

On Win_A

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 19

> nohup java -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot -config config1.xml &

On Win_B

> nohup java -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot -config config2.xml &

On Win_C

> nohup java -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot -config config3.xml &

Finally, from any window (Win_A, Win_B, Win_C, or a new window), use the KVStore
administrative CLI to configure and deploy the store.

To start the administrative CLI, execute the following command:

> java -jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host <host-ip> -port 13230

To configure and deploy the store, type the following commands from the administrative CLI
prompt (remembering to substitute the actual IP address or hostname for the string <host-
ip>):

configure -name store-name
plan deploy-zone -name Zone1 -rf 3 -wait
plan deploy-sn -zn 1 -host <host-ip> -port 13230 -wait
plan deploy-admin -sn 1 -port 13231 -wait
pool create -name snpool
pool join -name snpool -sn sn1
plan deploy-sn -zn 1 -host <host-ip> -port 13240 -wait
plan deploy-admin -sn 2 -port 13241 -wait
pool join -name snpool -sn sn2
plan deploy-sn -zn 1 -host <host-ip> -port 13250 -wait
plan deploy-admin -sn 3 -port 13251 -wait
pool join -name snpool -sn sn3
change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"
change-policy -params cacheSize=10000000
topology create -name store-layout -pool snpool -partitions 100
plan deploy-topology -name store-layout -plan-name RepNode-Deploy -wait

Note

The CLI command prompt (kv->) was excluded from the list of commands above to
facilitate cutting and pasting the commands into a CLI load script.

When the above commands complete (use show plans), the store is up and running and ready
for data to be written to it. Before proceeding, verify that a directory like that shown above
for the multi-disk scenario has been laid out. That is:

 - Win_A - - Win_B - - Win_C -

/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 20

 log files log files log files
 /example-store /example-store /example-store
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env
/tmp/sn1/disk1/ondb/data /tmp/sn2/disk1/ondb/data /tmp/sn3/disk1/ondb/data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env
 00000000.jdb 00000000.jdb 00000000.jdb

When a key/value pair is written to the store, it is stored in each of the (rf=3) files named,
00000000.jdb that belong to a given replication group (shard); for example, when a single
key/value pair is written to the store, that pair would be stored in either these files:

/tmp/sn1/disk2/ondb/data/rg2-rn1/env/00000000.jdb
/tmp/sn2/disk2/ondb/data/rg2-rn2/env/00000000.jdb
/tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb

Or in these files:

/tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
/tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
/tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb

At this point, each file should contain no key/value pairs. Data can be written to the store
in the most convenient way. But a utility that is quite handy for doing this is the KVStore
client shell utility; which is a process that connects to the desired store and then presents a
command line interface that takes interactive commands for putting and getting key/value
pairs. To start the KVStore shell, type the following from a window:

> java -jar /opt/ondb/kv/lib/kvstore.jar runadmin\
 -host <host-ip> -port 13230 -store store-name

kv-> get -all
 0 Record returned.

kv-> put -key /FIRST_KEY -value "HELLO WORLD"
 Put OK, inserted.

kv-> get -all
 /FIRST_KEY
 HELLO WORLD

A quick way to determine which files the key/value pair was stored in is to simply grep for the
string "HELLO WORLD"; which should work with binary files on most linux systems. Using the
grep command in this way is practical for examples that consist of only a small amount of
data.

> grep "HELLO WORLD" /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 21

> grep "HELLO WORLD" /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb

> grep "HELLO WORLD" /tmp/sn1/disk2/ondb/data/rg2-rn1/env/00000000.jdb
 Binary file /tmp/sn1/disk2/ondb/data/rg2-rn1/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn2/disk2/ondb/data/rg2-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk2/ondb/data/rg2-rn2/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb matches

In the example above, the key/value pair that was written to the store was stored by each RN
belonging to the second shard; that is, each RN is a member of the replication group with id
equal to 2 (rg2-rn1, rg2-rn2, and rg2-rn3).

Note

With which shard a particular key is associated depends on the key's value
(specifically, the hash of the key's value) as well as the number of shards maintained
by the store. It is also worth noting that although this example shows log files with
the name 00000000.jdb, those files are only the first of possibly many such log files
containing data written by the corresponding RN service.

As the current log file reaches its maximum capacity, a new file is created to receive all new
data written. That new file's name is derived from the previous file by incrementing the prefix
of the previous file. For example, you might see files with names such as, "..., 00000997.jdb,
00000998.jdb, 00000999.jdb, 00001000.jdb,00001001.jdb, ...".

After the data has been written to the store, a failed disk can be simulated, and the disk
replacement process can be performed. To simulate a failed disk, pick one of the storage
directories where the key/value pair was written and, from a command window, delete the
storage directory. For example:

> rm -rf /tmp/sn3/disk2

At this point, if the log file for SN3 is examined, you should see repeated exceptions being
logged. That is:

> tail /opt/ondb/var/kvroot/store-name/log/sn3_0.log

rg2-rn3: ProcessMonitor: java.lang.IllegalStateException: Error occurred
accessing statistic log file
 /tmp/sn3/disk2/ondb/data/rg2-rn3/env/je.stat.csv.
.......

But if the client shell is used to retrieve the previously stored key/value pair, the store is still
operational, and the data that was written is still available. That is:

kvshell-> get -all
 /FIRST_KEY
 HELLO WORLD

The disk replacement process can now be performed. From the command window in which the
KVStore administrative CLI is running, execute the following (step 2 from above):

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 22

kv-> plan stop-service -service rg2-rn3
 Executed plan 9, waiting for completion...
 Plan 9 ended successfully

kv-> verify configuration

 Rep Node [rg2-rn3] Status: UNREACHABLE

If you attempt to restart the RN service that was just stopped, the attempt would not
succeed. This can be seen via the contents of SN3's log file/opt/ondb/var/kvroot/store-
name/log/sn3_0.log. The contents of that file indicate repeated attempts to restart the
service, but due to the missing directory – that is, because of the "failed" disk – each attempt
to start the service fails, until the process reaches an ERROR state; for example:

kv-> show plans
 1 Deploy Zone (1) SUCCEEDED

 9 Stop RepNodes (9) SUCCEEDED
 10 Start RepNodes (10) ERROR

Now, the disk should be "replaced". To simulate disk replacement, we must create the original
parent directory of rg2-rn3; which is intended to be analogous to installing and formatting the
replacement disk:

> mkdir -p /tmp/sn3/disk2/ondb/data

From the administrative CLI, attempt to restart the RN service should succeed since the disk
has been "replaced".

kv-> plan start-service -service rg2-rn3 -wait
 Executed plan 11, waiting for completion...
 Plan 11 ended successfully

kv-> verify configuration

 Rep Node [rg2-rn3] Status: RUNNING,REPLICA at sequence
 number 327 haPort:13254

To verify that the data has been recovered as expected, grep for "HELLO WORLD" again.

> grep "HELLO WORLD" /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb matches

To see why the disk replacement process outlined above might be more complicated for
the default – and by extension, the single disk – case than it is for the multi-disk case, try
running the example above using default storage directories; that is, remove the storagedir
parameters from the invocation of the makebootconfig command above. This will result in a
directory structure such as:

/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /store-name /store-name /store-name

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 23

 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /rg2-rn1 /rg2-rn2 /rg2-rn3

In a similar example, to simulate a failed disk in this case, you would delete the directory /
opt/ondb/var/kvroot/sn3 ; which is the parent of the /admin3 database, the /rg1-rn3
database, and the /rg2-rn3 database.

It is important to note that the directory also contains the configuration for SN3. Since SN3's
configuration information is contained under the same parent – which is analogous to that
information stored on the same disk – as the replication node databases; when the "failed" disk
is "replaced" as it was in the previous example, the step where the RN service(s) are restarted
will fail because SN3's configuration is no longer available. While the replicated data can be
automatically recovered from the other nodes in the system when a disk is replaced, the SN's
configuration information cannot. That data must be manually restored from a previously
backed up copy. This extends to the non-default, single disk case in which different storagedir
parameters are used to separate the KVROOT location from the location of each RN database.
In that case, even though the replicated data is stored in separate locations, that data is still
stored on the same physical disk. Therefore, if that disk fails, the configuration information is
still not available on restart, unless it has been manually reinstalled on the replacement disk.

Servers

Although not as common as a failed disk, it is not unusual for an administrator to need to
replace one of the machines hosting services making up a given KVStore deployment (an SN).
There are two common scenarios where a whole machine replacement may occur. The first
is when one or more hardware components fail and it is more convenient or cost effective to
simply replace the whole machine than it is to replace the failed components. The second is
when a working, healthy machine is to be upgraded to a machine that is bigger and robust; for
example, a machine with larger disks and better performance characteristics. The procedures
presented in this section are intended to describe the steps for preparing a new machine to
replace an existing machine, and the steps for retiring the existing machine.

Detecting and Correlating Server Failures to NoSQL Log Events

In a distributed such as Oracle NoSQL Database, it is generally difficult to distinguish between
network outages and machine failure. The HA components of the NoSQL Database detects
when a replication node is unreachable and logs this as an event in the admin log - however
grepping for this log event produces false positives. Therefore it is recommended to utilize a
systems monitoring package like SNMP or JMX to detect machine/server failure.

Resolving Server Failures

Two replacement procedures are presented below. Both procedures essentially achieve the
same results, and both will result in one or more network restore processes being performed
(see below).

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 24

The first procedure presented replaces the old machine with a machine that – to all interested
parties – looks exactly like the original machine. That is, the new machine has the same
hostname, IP address, port, and SN id. Compare this with the second procedure; where the
old machine is removed from the store's topology and replaced with a machine that appears to
be a different machine - different hostname, IP address, SN id – but the behavior is identical
to the behavior of the replaced machine. That is, the new machine runs the same services,
and manages the exact same data, as the original machine; it just happens to have a different
network and SN identity. Thus, the first case can be viewed as a replacement of only the
hardware; that is, from the point of view of the store, the original SN was temporarily taken
down and then restarted. The new hardware is not reflected in the store's topology. In the
other case, the original SN is removed, and a different SN takes over the original's duties.
Although the store's content and behavior hasn't changed, the change in hardware is reflected
in the store's new topology.

When determining which procedure to use when replacing a storage node, the decision is left
to the discretion of the store administrator. Some administrators prefer to always use only one
of the procedures, never the other. And some administrators establish a policy that is based
on some preferred criteria. For example, you might imagine a policy where the first procedure
is employed whenever SN replacement must be performed because the hardware has failed;
whereas the second procedure is employed whenever healthy hardware is to be upgraded
with newer/better hardware. In the first case, the failed SN is down and unavailable during
the replacement process. In the second case, the machine to be replaced can remain up and
available while the new machine is being prepared for migration; after which the old machine
can be shut down and removed from the topology.

Terminology Review

It may be useful to review some of the terminology introduced in the Oracle NoSQL Database
Getting Started Guide as well as the Oracle NoSQL Database Administrator's Guide. Recall
from those documents that the physical machine on which the processes of the KVStore run is
referred to as a storage node, or SN; where a typical KVStore deployment generally consists
of a number of machines – that is, a number of SNs – that execute the processes and software
services provided by the Oracle NoSQL Database KVStore. Recall also that when the KVStore
software is initially started on a given SN machine, a process referred to as the "Storage Node
Agent" (or the SNA) is started. Then, once the SNA is started, the KVStore administrative CLI
is used to configure the store and deploy a "topology"; which results in the SNA executing
and managing the lifecycle of one or more "services" referred to as "replication nodes" (or RN
services). Finally, in addition to starting and managing RN services, the SNA also optionally
(depending on the configuration) starts and manages another service type referred to as the
"admin" service.

Because of the 1-to-1 correspondence between the machines making up a given KVStore
deployment and the SNA process initially started on each machine when installing and
deploying a store, the terms "storage node", "SN", or "SNx" (where x is a positive integer)
are often used interchangeably in the Oracle NoSQL Database documents – including this
note – when referring to either the machine on which the SNA is running, or the SNA process
itself. Which concept is intended should be clear from the context in which the term is used
in a given discussion. For example, when the terms SN3 or sn3 are used below as part of a
discussion about hardware issues such as machine failure and recovery, that term refers to
the physical host machine running an SNA process that has been assigned the id value 3 and

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 25

is identified in the store's topology with the string "sn3". In other contexts, for example when
the behavior of the store's software is being discussed, the term SN3 and/or sn3 would refer to
the actual SNA process running on the associated machine.

Although not directly pertinent to the discussion below, the following terms are presented
not only for completeness, but also because it may be useful to understand their implications
when trying to determine which SN replacement procedure to employ.

First, recall from the Oracle NoSQL Database documents that the RN service(s) that are
started and managed by each SNA are represented in the store's topology by their service
identification number (a positive integer), in conjunction with the identification number of
the replication group – or "shard" – in which the service is a member. For example, a given
store's topology may reference a particular RN service with the string, "rg3-rn2"; which
represents the RN service having id equal to 2 that is a member of the replication group (that
is, the shard) with id 3. The capacity then, of a given SN machine that is operating as part of
a given KVStore cluster is the number of RN services that will be started and managed by the
SNA process deployed to that SN host. Thus, if the capacity of a given SN is 1, only a single
RN service will be started and managed by that SN. On the other hand, if the capacity is 3
(for example), then 3 RN services will be started and managed by that SN, and each RN will
typically belong to a different replication group (share).

With respect to the SN host machines and resident SNA processes that are deployed to a given
KVStore, two concepts to understand are the concept of a "zone", and the concept of a "pool"
of storage nodes. Both concepts correspond to mechanisms that are used to organize the SNs
of the store into groups. As a result, the distinction between the two concepts is presented
below.

When configuring a KVStore for deployment, it is a requirement that at least one "zone" be
deployed to the store before deploying any storage nodes. Then, when deploying each SNA
process, in addition to specifying the desired host, one of the previously deployed zones must
also be specified; which, with respect to the store's topology, will "contain" that SNA, as well
as the services managed by that SNA. Thus, the KVStore deployment process produces a a
store consisting of one or more zones, where a distinct set of storage nodes belongs to (is a
member of) one – and only one – of those zones.

In contrast to a zone, rather than being "deployed" to the store, one or more storage node
"pools" can be (optionally) "created" within the store. Once such a "pool" is created, any
deployed storage node can then be configured to "join" that pool, as well as any other pool
that has been created. This means that, unlike zones, where the store consists of one or more
zones containing disjoint sets of the deployed SNs, the store can also consist of one or more
"pools", where there is no restriction on which, or how many, pools a given SN joins. Every
store is automatically configured with a default pool named, "AllStorageNodes"; which all
deployed storage nodes join. The creation of any additional pools is optional, and left to the
discretion of the deployer; as is the decision about which pools a given storage node joins.

Besides the differences described above, there are additional conceptual differences to
understand when using zones and pools to group sets of storage nodes. Although zones can be
used to represent logical groupings of a store's nodes, crossing physical boundaries, deployers
generally map them to real, physical locations. For example, although there is nothing to
prevent the deployment of multiple SNA processes to a single machine, where each SNA is

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 26

deployed to a different zone, more likely than not, a single SNA will be deployed to a single
machine, and the store's zones along with the SN machines within each zone will generally
be defined to correspond to physical locations that provide some form of fault isolation. For
example, each zone may be defined to correspond to a separate floor of a building; or to
separate buildings, a few miles apart (or even across the country).

Compare how zones are used with how pools are generally used. A single pool may represent
all of the storage nodes across all zones; where the default pool is one such pool. On the other
hand, multiple pools may be specified; in some cases with no relation between the pools and
zones, and in other cases with each pool corresponding to a zone and containing only the
nodes belonging to that zone. Although there may be reasons to map a set of storage node
pools directly to the store's zones, this is not the primary intent of pools. Whereas the intent
of zones is to enable better fault isolation and geographic availability via physical location of
the storage nodes, the primary purpose of a pool is to provide a convenient mechanism for
referring to a group of storage nodes when applying a given administrative operation. That is,
the administrative store operations that take a pool argument can be called once to apply the
desired operation to all storage nodes belonging to the specified pool, avoiding the need to
execute the operation multiple times; once for each storage node.

Associated with zones, another term to understand is "replication factor" (or "rf"). Whenever a
zone is deployed to a KVStore, the "replication factor" of that zone must be specified; which
represents the number of copies (or "replicas") of each key/value pair to write and maintain
on the nodes of the associated zone. Note that whereas "capacity" is a per/SN concept that
specifies the number of RN services to manage on a given machine, the "replication factor" is
a concept whose scope is per/zone, and is used to determine the number of RN services that
belong to each shard (or "replication group") created and managed within the associated zone.

Finally, a "network restore" is a process whereby the store automatically recovers all data
previously written by a given RN service; retrieving replicas of the data from one or more
RN services running on different SNs and then transferring that data (across the network)
to the RN whose database is being restored. It is important to understand the implications
this process may have on system performance; as the process can be quite time consuming,
and can add significant network traffic and load while the data store of the restored RN is
being repopulated. Additionally, with respect to SN replacement, these implications can be
magnified when the capacity of the SN to be replaced is greater than 1; as this will result in
multiple network restorations being performed.

Assumptions

When presenting the two procedures below, for simplicity, assume that a KVStore is initially
deployed to 3 machines, resulting in a cluster of 3 storage nodes; sn1, sn2, sn3 on hosts with
names, host-sn1, host-sn2, and host-sn3 respectively. Assume that:

• Each machine has a disk named /opt and a disk named /disk1; where each SN will store its
configuration and admin database under /opt/ondb/var/kvroot, but will store the data
that is written on the other, separate disk under /disk1/ondb/data.

• The KVStore is installed on each machine under /opt/ondb/kv; that is,KVHOME=/opt/
ondb/kv.

• The KVStore is deployed with KVROOT=/opt/ondb/var/kvroot.

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 27

• The KVStore is named "example-store".

• One zone – named "Zone1" and configured with rf=3 – is deployed to the store.

• Each SN is configured with capacity=1.

• After deploying each SN to the zone named "Zone1", each SN joins the pool named "snpool".

• In addition to the SNA and RN services, an admin service is also deployed to each machine;
that is, admin1 is deployed to host-sn1 , admin2 is deployed to host-sn2, and admin3 is
deployed to host-sn3, each listening on port 13230.

Using specific values such as those reflected in the Assumptions (page 26) described above
enables to follow the steps of each procedure. Combined with the information contained in
the Oracle NoSQL Database Administrator's Guide, administrators can generalize and extend
those steps to their own particular deployment scenario, substituting the values specific to
the given environment where necessary.

Replacement Procedure 1: Replace SN with Identical SN

The procedure presented in this section describes how to replace the desired SN with a
machine having an identical network and SN identity. A number of requirements must be
satisfied before executing this procedure; which are:

• An admin service must be running and accessible somewhere in the system.

• The id of the SN to be replaced must be known.

• The SN to be replaced must be taken down – either administratively or via failure – before
starting the new SN.

An admin service is necessary so that the current configuration of the SN to be replaced can
be retrieved from the admin service's database and packaged for installation on the new SN.
Thus, before proceeding, the administrator must know the location (hostname or IP address)
of the admin service, along with the port on which that service is listening for requests.
Additionally, since this process requires the id of the SN to be replaced, the administrator
must also know that value before initiating the procedure below; for example, something like,
sn1, sn2, sn3, etc.

Finally, if the SN to be replaced has failed, and is down, the last requirement above is
automatically satisfied. On the other hand, if the SN to be replaced is up, then at some point
before starting the new SN, the old SN must be down so that that SN and the replacement SN
do not conflict.

With respect to the requirement related to the admin service, if the system is running
multiple instances of the admin, it is not important which instance is used in the steps below;
just that the admin is currently running and accessible. This means that if the SN to be
replaced is not only up but is also running an admin service, then that admin service can be
used to retrieve and package that SN's current configuration. But if that SN has failed or is
down or inaccessible for some reason, then any admin service on that SN is also down and/
or inaccessible - which means an admin service running on one of the other SNs in the system
must be used in the procedure below. This is why the Oracle NoSQL Database documents

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 28

strongly encourage administrators to deploy multiple admin services; where the number
deployed should make quorum loss less likely.

For example, it is obvious that if only 1 admin service was specified when deploying the store,
and that service was deployed to the SN to be replaced, and that SN has failed or is otherwise
inaccessible, then the loss of that single admin service makes it very difficult to replace the
failed SN using the procedure presented here. Even if multiple admins are deployed – for
example, 2 admins – and the failure of the SN causes just one of those admins to also fail and
thus lose quorum, even though a working admin remains, it will still require additional work
to recover quorum so that the admin service can perform the necessary duties to replace the
failed SN.

Suppose a KVStore has been deployed as described in the section Assumptions (page 26).
Also, suppose that the sn2 machine (whose hostname is, "host-sn2") has failed in some way and
needs to be replaced. If the administrator wishes to replace the failed SN with an identical
but healthy machine, then the administrator would do the following:

1. If, for some reason, host-sn2 is running, shut it down.

2. Log into host-sn1 (or host-sn3).

3. From the command line, execute the generateconfig utility to produce a ZIP file named
"sn2-config.zip" that contains the current configuration of the failed SN (sn2):
> java -jar /opt/ondb/kv/lib/kvstore.jar generateconfig \
 -host host-sn1 -port 13230 \
 -sn sn2 -target /tmp/sn2-config

which creates and populates the file, /tmp/sn2-config.zip.

4. Install and provision a new machine with the same network configuration as the machine
to be replaced; specifically, the same hostname and IP address.

5. Install the KVStore software on the new machine under KVHOME=/opt/ondb/kv.

6. If the directory KVROOT=/opt/ondb/var/kvroot exists, then make sure it's empty;
otherwise, create it:
> rm -rf /opt/ondb/var/kvroot
> mkdir -p /opt/ondb/var/kvroot

7. Copy the ZIP file from host-sn1 to the new host-sn.
> scp /tmp/sn2-config.zip host-sn2:/tmp

8. On the new host-sn2, install the contents of the ZIP file just copied.
> unzip /tmp/sn2-config.zip -d /opt/ondb/var/kvroot

9. Restart the sn2 storage node on the new host-sn2 machine, using the old sn2 configuration
that was just installed:
> nohup java -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config.xml&

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 29

which, after starting the SNA, RN, and admin services, will initiate a (possibly time-
consuming) network restore, to repopulate the data stores managed by this new sn2.

Replacement Procedure 2: New SN Takes Over Duties of Removed SN

The procedure presented in this section describes how to deploy a new SN, having a network
and SN identity different than all current SNs in the store, that will effectively replace one of
the current SNs by taking over that SN's duties and data. Unlike the previous procedure, the
only prerequisite that must be satisfied when executing this second procedure is the existence
of a working quorum of admin service(s). Also, whereas in the previous procedure the SN to be
replaced must be down prior to powering up the replacement SN (because the two SNs share
an identity), in this case, the SN to be replaced can remain up and running until the migration
step of the process; where the replacement SN finally takes over the duties of the SN being
replaced. Thus, although the SN to be replaced can be down throughout the whole procedure
if desired, that SN can also be left up so that it can continue to service requests while the
replacement SN is being prepared.

Suppose a KVStore has been deployed as described in the section Assumptions (page 26).
Also, suppose that the sn2 machine is currently up, but needs to be upgraded to a new
machine with more memory, larger disks, and better overall performance characteristics. The
administrator would then do the following:

1. From a machine with the Oracle NoSQL Database software installed that has network
access to one of the machines running an admin service for the deployed KVStore, start
the administrative CLI; connecting it to that admin service. The machine on which the CLI
is run can be any of the machines making up the store – even the machine to be replaced
– or a separate client machine. For example, if the administrative CLI is started on the
sn1 storage node, and one wishes to connect that CLI to the admin service running on
that same sn1 host, the following would be typed from a command prompt on the host
named, host-sn1:

> java -jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host host-sn1 -port 13230

2. From the administrative CLI just started, execute the show pools command to
determine the storage node pool the new storage node will need to join after
deployment; for example,

kv-> show pools

which, given the initial assumptions, should produce output that looks like the following:

AllStorageNodes: sn1 sn2 sn3
snpool: sn1 sn2 sn3

where, from this output, one should note that the name of the pool the new storage node
should join below is "snpool"; and the pool named "AllStorageNodes" is the pool that all
storage nodes join by default when deployed.

3. From the administrative CLI just started, execute the show topology command to
determine the zone to use when deploying the new storage node; for example,

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 30

kv-> show topology

which, should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 RUNNING
 [rg1-rn2] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

where, from this output, one should then note that the id of the zone to use when
deploying the new storage node is "1".

4. Install and provision a new machine with a network configuration that is different than
each of the machines currently known to the deployed KVStore. For example, provision
the new machine with a hostname such as, host-sn4, and an IP address unique to the
store's members.

5. Install the KVStore software on the new machine under KVHOME=/opt/ondb/kv.

6. Create the new storage node's KVROOT directory; for example:

> mkdir -p /opt/ondb/var/kvroot

7. Create the new storage node's data directory on a separate disk than KVROOT; for
example:

> mkdir -p /disk1/ondb/data

Note

The path used for the data directory of the replacement SN must be identical to
the path used by the SN to be replaced.

8. From the command prompt of the new host-sn4 machine, use the makebootconfig utility
(described in Chapter 2 of the Oracle NoSQL Database Administrator's Guide, section,
"Installation Configuration") to create an initial configuration for the new storage node
that is consistent with the Assumptions (page 26) specified above; for example:

> java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -port 13230 \
 -admin 13231 \
 -host host-sn4
 -harange 13232,13235 \

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 31

 -num_cpus 0 \
 -memory_mb 0 \
 -capacity 1 \
 -storagedir /disk1/ondb/data

which produces the file named config.xml, under KVROOT=/opt/ondb/var/kvroot.

9. Using the configuration just created, start the KVStore software (the SNA and its managed
services) on the new host-sn4 machine; for example,
> nohup java -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config.xml &

10. Using the information associated with the sn2 storage node (the SN to replace) that
was gathered from the show topology and show pools commands above, use the
administrative CLI to deploy the new storage node and join the desired pool; that is,
kv-> plan deploy-sn -znname Zone1 -host host-sn4 -port 13230 -wait
kv-> pool join -name snpool -sn sn4

For an SN to join a pool, the SN must have been successfully deployed and the id of
the deployed SN must be specified in the pool join command; for example, "sn4"
above. But upon examination of the plan deploy-sn, command you can see that the
id to assign to the SN being deployed is not specified. This is because it is the KVStore
itself – not the administrator – that determines the id to assign to a newly deployed SN.
Thus, given that it was assumed that only 3 storage nodes were initially deployed in the
example used to demonstrate this procedure, when deploying the next storage node, the
system will increment by 1 the integer component of the id assigned to the most recently
deployed SN – "sn3" or 3 in this case – and use the result to construct the id to assign to
the next SN that is deployed. Hence, "sn4" was assumed to be the id to specify to the
pool join command above. But if you want to ascertain the assigned id, then before
joining the pool, execute the show topology command which will display the id that was
constructed and assigned to the newly deployed SN.

11. Since the old SN must not be running when the migrate operation is performed (see the
next step), if the SN to be replaced is still running at this point, programmatically shut
it down, and then power off and disconnect the associated machine. This step can be
performed at any point prior to performing the next step. Thus, to shut down the SN to be
replaced, type the following from the command prompt of the machine hosting that SN:
> java -jar /opt/ondb/kv/lib/kvstore.jar stop \
 -root /opt/ondb/var/kvroot

On completion, the associated machine can then be powered down and disconnected if
desired.

12. After the new storage node has been deployed, joined the desired pool, and the SN to
be replaced is no longer running, use the administrative CLI to migrate that old SN to
the new SN. This means, in this case, that the SNA, RN and admin services associated
with sn4 will take over the duties previously performed in the store by the corresponding
services associated with sn2; and the data previously stored by sn2 will be moved – via

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 32

the network – to the storage directory for sn4. To perform this step then, execute the
following command from the CLI:

kv-> plan migrate-sn -from sn2 -to sn4 -admin-port 13231 [-wait]

In this case, because the old SN had been running an admin service, the admin-port
argument must be specified with the same value as that used above for the admin
argument in the makebootconfig command. The -wait argument is optional in the
command above. If -wait is used, then the command will not return until the full
migration has completed; which, depending on the amount of data being migrated,
can take a long time. If -wait is not specified, then the show plan -id <migration-
plan-id> command is used to track the progress of the migration; allowing other
administrative tasks to be performed during the migration.

13. After the migration process completes, remove the old SN from the store's topology. You
can do this by executing the plan remove-sn command from the administrative CLI. For
example,

kv-> plan remove-sn -sn sn2 -wait

At this point, the store should have a structure similar to its original structure; except
that the data that was originally stored by sn2 on the host named host-sn2 via that node's
rg1-rn2 service, is now stored on host-sn4 by the sn4 storage node (via the migrated
service named rg1-rn2 that sn4 now manages).

Examples

In this section, two examples are presented that should allow you to gain some practical
experience with the SN replacement procedures presented above. Each example uses the
same initial configuration, and is intended to simulate a 3-node KVStore cluster using a
single machine with a single disk. Although no machines will actually fail or be physically
replaced, you should still get a feel for how the cluster and the data stored by a given SN
is automatically recovered when that storage node is replaced using one of the procedures
described above.

Assume that a KVStore is deployed in a manner similar to the section Assumptions (page
26) Specifically, assume that a KVStore is initially deployed using 3 storage nodes - named
sn1, sn2, and sn3 – on a single host with IP address represented by the string, <host-ip>
where the host's actual IP address (or hostname) is substituted for <host-ip> when running
either example. Additionally, since your development system will typically not contain a disk
named /disk1 (as specified in the Assumptions (page 26) section), rather than provisioning
such a disk, assume instead that the data written to the store will be stored under /tmp/sn1/
disk1, /tmp/sn2/disk1, and /tmp/sn3/disk1 respectively. Finally, since each storage node
runs on the same host, assume each storage node is configured with different ports for the
services and admins run by those nodes; otherwise, all other assumptions are as stated above
in the Assumptions (page 26) section.

Setup

As indicated above, the initial configuration and setup is the same for each example presented
below. Thus, if not done so already, first create the KVROOT directory; that is,

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 33

> mkdir -p /opt/ondb/var/kvroot

Then, to simulate the data disk, create the following directories:

> mkdir -p /tmp/sn1/disk1/ondb/data
> mkdir -p /tmp/sn2/disk1/ondb/data
> mkdir -p /tmp/sn3/disk1/ondb/data

Next, open 3 windows; Win_A, Win_B, and Win_C, which will represent the 3 machines running
each storage node. In each window, execute the makebootconfig command (remembering
to substitute the actual IP address or hostname for the string <host-ip>) to create a different,
but similar, boot config for each SN that will be configured.

On Win_A

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot
 -host <host-ip> \
 -config config1.xml \
 -port 13230 \
 -harange 13232,13235 \
 -admin 13231 \
 -memory_mb 100 \
 -capacity 1 \
 -storagedir /tmp/sn1/disk1/ondb/data

On Win_B

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config2.xml \
 -port 13240 \
 -harange 13242,13245 \
 -admin 13241 \
 -memory_mb 100 \
 -capacity 1 \
 -storagedir /tmp/sn2/disk1/ondb/data

On Win_C

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config3.xml \
 -port 13250 \
 -harange 13252,13255 \
 -admin 13251 \
 -memory_mb 100 \
 -capacity 1 \
 -storagedir /tmp/sn3/disk1/ondb/data

This will produce 3 configuration files:

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 34

/opt/ondb/var/kvroot
 /config1.xml
 /config2.xml
 /config3.xml

Next, using the different configurations just generated, from each window, start a
corresponding instance of the KVStore storage node agent (SNA); which, based on the specific
configurations generated, will start and manage an admin service and an RN service.

Win_A

> nohup java -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config1.xml &

Win_B

> nohup java -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config2.xml &

Win_C

nohup java -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config3.xml &

Finally, from any window (Win_A, Win_B, Win_C, or a new window), start the KVStore
administrative CLI and use it to configure and deploy the store. For example, to start
an administrative CLI connected to the admin service that was started above using the
configuration employed in Win_A, you would execute the following command:

> java -jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host <host-ip> -port 13230

To configure and deploy the store, type the following commands from the administrative CLI
prompt (remembering to substitute the actual IP address or hostname for the string <host-
ip>):

configure -name example-store
plan deploy-zone -name Zone1 -rf 3 -wait
plan deploy-sn -znname Zone1 -host <host-ip> -port 13230 -wait
plan deploy-admin -sn 1 -port 13231 -wait
pool create -name snpool
pool join -name snpool -sn sn1
plan deploy-sn -znname Zone1 -host <host-ip> -port 13240 -wait
plan deploy-admin -sn 2 -port 13241 -wait
pool join -name snpool -sn sn2
plan deploy-sn -znname Zone1 -host <host-ip> -port 13250 -wait
plan deploy-admin -sn 3 -port 13251 -wait
pool join -name snpool -sn sn3
change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"
change-policy -params cacheSize=10000000
topology create -name store-layout -pool snpool -partitions 300

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 35

plan deploy-topology -name store-layout -plan-name RepNode-Deploy -wait

Note

The CLI command prompt (kv->) was excluded from the list of commands above to
facilitate cutting and pasting the commands into a CLI load script.

When the commands above complete (use show plans to verify each plan's completion),
the store is up and running and ready for data to be written to it. Before proceeding though,
verify that directories like those shown below have been created and populated:

 - Win_A - - Win_B - - Win_C -

/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /example-store /example-store /example-store
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env

/tmp/sn1/disk1/ondb/data /tmp/sn2/disk1/ondb/data /tmp/sn3/disk1/ondb/data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env
 00000000.jdb 00000000.jdb 00000000.jdb

Because rf=3 for the deployed store, and capacity=1 for each SN in that store, when a key/
value pair is initially written to the store, the pair is stored by each of the replication nodes
– rn1, rn2, and rn3 – in their corresponding data file named "00000000.jdb"; where each
replication node is a member of the replication group – or shard – named rg1; that is, the key/
value pair is stored in:

/tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
/tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
/tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb

At this point in the setup, each file should contain no key/value pairs. Data can be written
to the store in a way most convenient. But a utility that is quite handy for doing this is the
KVStore client shell utility; which is a process that connects to the desired store and then
presents a command line interface that takes interactive commands for putting and getting
key/value pairs. To start the KVStore client shell, type the following from a command window
(remembering to substitute the actual IP address or hostname for the string <host-ip>):

> java -jar /opt/ondb/kv/lib/kvstore.jar runadmin\
 -host <host-ip> -port 13230 -store example-store

kv-> get -all
 0 Record returned.

kv-> put -key /FIRST_KEY -value "HELLO WORLD"
 Put OK, inserted.

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 36

kv-> get -all
 /FIRST_KEY
 HELLO WORLD

Although simplistic and not very programmatic, a quick way to verify that the key/value
pair was stored by each RN service is to simply grep for the string "HELLO WORLD" in each of
the data files; which should work with binary files on most linux systems. Using the "grep"
command in this way is practical for examples that consist of only a small amount of data.

> grep "HELLO WORLD" /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
 Binary file /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb matches

Based on the output above, the key/value pair that was written to the store was stored by
each RN service belonging to the shard rg1; that is, each RN service that is a member of
the replication group with id equal to 1 (rg1-rn1, rg1-rn2, and rg1-rn3). With which shard
a particular key is associated depends on the key's value (specifically, the hash of the key's
value) as well as the number of shards maintained by the store (1 in this case). It is also worth
noting that although this example shows log files with the name 00000000.jdb, those files
are only the first of possibly many such log files containing data written by the corresponding
RN service. Over time, as the current log file reaches its maximum capacity, a new file will
be created to receive all new data being written. That new file has a name derived from
the previous file by incrementing the prefix of the previous file. For example, you might see
files with names such as, "..., 00000997.jdb, 00000998.jdb, 00000999.jdb, 00001000.jdb,
00001001.jdb, ...".

Now that data has been written to the store, a failed storage node can be simulated, and an
example of the first SN replacement procedure can be performed.

Example 1: Replace a Failed SN with an Identical SN

To simulate a failed storage node, pick one of the storage nodes started above,
programmatically stop it's associated processes, and delete all files and directories associated
with that process. For example, suppose sn2 is the "failed" storage node. But before stopping
the sn2 storage node, you might first (optionally) identify the processes that are running as
part of the deployed store; that is:

> jps -m
408 kvstore.jar start -root /opt/ondb/var/kvroot -config config1.xml
833 ManagedService -root /opt/ondb/var/kvroot -class Admin -service
BootstrapAdmin.13230 -config config1.xml
1300 ManagedService -root /opt/ondb/var/kvroot/example-store/sn1 -store
example-store -class RepNode -service rg1-rn1
....
563 kvstore.jar start -root /opt/ondb/var/kvroot -config config2.xml
1121 ManagedService -root /opt/ondb/var/kvroot/example-store/sn2
-store example-store -class Admin -service admin2

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 37

1362 ManagedService -root /opt/ondb/var/kvroot/example-store/sn2
-store example-store -class RepNode -service rg1-rn2
....
718 kvstore.jar start -root /opt/ondb/var/kvroot -config config3.xml
1232 ManagedService -root /opt/ondb/var/kvroot/example-store/sn3 -store
example-store -class Admin -service admin3
1431 ManagedService -root /opt/ondb/var/kvroot/example-store/sn3 -store
example-store -class RepNode -service rg1-rn3
....

The output above was manually re-ordered for readability. In reality, each process listed may
appear in a random order. But it should be noted that each SN from the example deployment
corresponds to 3 processes:

• The SNA process, which is characterized by the string "kvstore.jar start", and identified by
the corresponding configuration file; for example, config1.xml for sn1, config2.xml for
sn2, and config3.xml for sn3.

• An admin service is characterized by the string -class Admin , and either a string of the
form -service BootstrapAdmin.<port> or a string of the form -service admin<id>
(see the explanation below).

• An RN service characterized by the string -class RepNode along with a string of the form
-service rg1-rn<id>; where "<id>" is 1, 2, etc. and maps to the SN hosting the given RN
service, and where for a given SN, if the capacity of that SN is N>1, then for that SN, there
will be N processes listed that reference a different RepNode service.

Note

With respect to the line in the process list above that references the string -service
BootstrapAdmin.<port>, some explanation may be useful. When an SNA starts up
and the -admin argument is specified in the configuration, the SNA will initially start
what is referred to as a bootstrap admin. Because this example specified the -admin
argument in the configuration of all 3 storage nodes, each SNA in the example starts a
corresponding bootstrap admin. The fact that the process list above contains only one
entry referencing a BootstrapAdmin is explained below.

Recall that Oracle NoSQL Database requires the deployment of at least 1 admin service. If
more than 1 such admin is deployed, the admin that is deployed first takes on a special role
within the KVStore. In this example, any of the 3 bootstrap admins that were started by the
corresponding SNA can be that first deployed admin service. After configuring the store and
deploying the zone, the deployer must choose one of the storage nodes that was started and
use the plan deploy-sn command to deploy that storage node to the desired zone within the
store. After deploying that first storage node, the admin service corresponding to that storage
node must then be deployed, using the plan deploy-admin command.

Until that first admin service is deployed, no other storage nodes or admins can be deployed.
When that first admin service is deployed to the machine running the first SN (sn1 in this
case), the bootstrap admin running on that machine continues running, and takes on the
role of the very first admin service in the store. This is why the BootstrapAdmin.<port>

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 38

process continues to appear in the process list; whereas, as explained below, the processes
associated with the other storage nodes are identified by admin2 and admin3 rather than
BootstrapAdmin.<port>. It is only after this first admin is deployed that the other storage
nodes (and admins) can be deployed.

Upon deployment of any of the other storage nodes, the BootstrapAdmin process associated
with each such storage node is shut down and removed from the RMI registry. This is because
there is no longer a need for the bootstrap admin on these additional storage nodes. The
existence of a bootstrap admin is an indication that the associated SNA can host the first
admin if desired. But once the first storage node is deployed and its corresponding bootstrap
admin takes on the role of the first admin, the other storage nodes can no longer host that
first admin; and so, upon deployment of each additional storage node, the corresponding
BootstrapAdmin process is stopped. Additionally, if that first process referencing the
BootstrapAdmin is stopped and restarted at some point after the store has been deployed,
then the new process will be identified in the process list with the string -class Admin, just
like the other admin processes.

Finally, recall that although a store can be deployed with only 1 admin service, it is strongly
recommended that multiple admin services be run for greater availability; where the number
of admins deployed should be large enough that quorum loss is unlikely in the event of failure
of an SN. Thus, as this example demonstrates, after each additional storage node is deployed
(and the corresponding bootstrap admin is stopped), a new admin service should then be
deployed that will coordinate with the first admin service to replicate the administrative
information that is persisted. Hence, the admin service associated with sn1 in the process list
above is identified as a BootstrapAdmin (the first admin service), and the other admin services
are identified as simply admin2 and admin3.

Thus, to simulate a "failed" storage node, sn2 should be stopped; which is accomplished by
typing the following at the command prompt:

> java -jar /opt/ondb/kv/lib/kvstore.jar stop \
 -root /opt/ondb/var/kvroot \
 -config config2.xml

Optionally, use the jps command to examine the processes that remain; that is,

> jps -m

408 kvstore.jar start -root /opt/ondb/var/kvroot
-config config1.xml
833 ManagedService -root /opt/ondb/var/kvroot
-class Admin -service BootstrapAdmin.13230 -config config1.xml
1300 ManagedService -root /opt/ondb/var/kvroot/
example-store/sn1 -store example-store -class RepNode -service rg1-rn1
....
718 kvstore.jar start -root /opt/ondb/var/
kvroot -config config3.xml
1232 ManagedService -root /opt/ondb/var/kvroot/example-store/
sn3 -store example-store -class Admin -service admin3
1431 ManagedService -root /opt/ondb/var/kvroot/example-store/
sn3 -store example-store -class RepNode -service rg1-rn3

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 39

....

where the processes previously associated with sn2 are no longer running. Next, since the sn2
processes have stopped, the associated files can be deleted as follows:
> rm -rf /tmp/sn2/disk1/ondb/data/rg1-rn2
> rm -rf /opt/ondb/var/kvroot/example-store/sn2

> rm -f /opt/ondb/var/kvroot/config2.xml
> rm -f /opt/ondb/var/kvroot/config2.xml.log
> rm -f /opt/ondb/var/kvroot/snaboot_0.log.1*

> rm -r /opt/ondb/var/kvroot/example-store/log/admin2*
> rm -r /opt/ondb/var/kvroot/example-store/log/rg1-rn2*
> rm -r /opt/ondb/var/kvroot/example-store/log/sn2*
> rm -r /opt/ondb/var/kvroot/example-store/log/config.rg1-rn2
> rm -r /opt/ondb/var/kvroot/example-store/log/example-store_0.*.1*

where the files above that contain a suffix component of "1" (for example, snaboot_0.log.1
and example-store_0.log.1, example-store_0.perf.1,example-store_0.stat.1, etc.) are
associated with the sn2 storage node.

Executing the above commands should then simulate a catastrophic failure of the "machine"
to which sn2 was deployed; where the configuration and data associated with sn2 is now
completely unavailable, and is only recoverable via the deployment of a "new" – and in this
example, identical – sn2 storage node. To verify this, execute the show topology command
from the administrative CLI previously started; that is,
kv-> show topology

which should produce output that looks like the following:
store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] <host-ip> capacity=1 UNREACHABLE
 [rg1-rn2] UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn3] RUNNING

where the actual IP address or hostname appears instead of the string <host-ip>, and observe
that sn2 is now UNREACHABLE.

At this point, the first 2 steps of the SN replacement procedure have been executed. That
is, because the sn2 processes have been stopped and their associated files deleted, from the
point of view of the store's other nodes, the corresponding "machine" is inaccessible and so
has been effectively "shut down" (step 1). Additionally, because a single machine is being used
in this simulation, we are already logged in to the sn1 (and sn3) host (step 2). Thus, step 3 of

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 40

the procedure can now be performed. That is, to retrieve the sn2 configuration from one of
the store's remaining healthy nodes, execute the following command using the port for one of
those remaining nodes (and remembering to substitute the actual IP address or hostname for
the string <host-ip>):
> java -jar /opt/ondb/kv/lib/kvstore.jar generateconfig \
 -host <host-ip> -port 13230 \
 -sn sn2 -target /tmp/sn2-config

Verify that the command above produced the expected zip file:
> ls -al /tmp/sn2-config.zip
-rw-rw-r-- 1 <group> <owner> 2651 2013-07-08 12:53 /tmp/sn2-config.zip

where the contents of /tmp/sn2-config.zip should look something like:
> unzip -t /tmp/sn2-config.zip

Archive: /tmp/sn2-config.zip
testing: kvroot/config.xml OK
testing: kvroot/example-store/sn2/config.xml OK
testing: kvroot/example-store/security.policy OK
testing: kvroot/security.policy OK
No errors detected in compressed data of /tmp/sn2-config.zip

Next, because this example is being run on a single machine, steps 4, 5, 6, and 7 of the SN
replacement procedure have already been performed. Thus, the next step to perform is to
install the contents of the ZIP file just generated; that is,
> unzip /tmp/sn2-config.zip -d /opt/ondb/var

which will overwrite kvroot/security.policy and kvroot/example-store/
security.policy with identical versions of that file.

When the store was originally deployed, the names of the top-level configuration files were
not identical; that is, config1.xml for sn1, config2.xml for the originally deployed sn2, and
config3.xml for sn3. This was necessary because, for convenience, all three SNs were deployed
using the same KVROOT; which would have resulted in conflict among sn1, sn2, and sn3, had
identical names been used for those files. With this in mind, it should then be observed that
the generateconfig command executed above produces a top-level configuration file for
the new sn2 that has the default name (config.xml), rather than config2.xml. Because both
names – config2.xml and config.xml – are unique relative to the names of the configuration
files for the store's other nodes, either name can be used in the next step of the procedure
(see below). But to be consistent with the way sn2 was originally deployed, the original file
name will also be used when deploying the replacement. Thus, before proceeding with the
next step of the procedure, the name of the kvroot/config.xml file is changed to kvroot/
config2.xml; that is,
> mv /opt/ondb/var/kvroot/config.xml /opt/ondb/var/kvroot/config2.xml

Finally, the last step of the first SN replacement procedure can be performed. That is, a "new"
but identical sn2 is started using the old sn2 configuration:
> nohup java -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 41

 -config config2.xml &

Verification

To verify that sn2 has been successfully replaced, first execute the show topology command
from the administrative CLI; that is,

kv-> show topology

which should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn2] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn3] RUNNING

where the actual IP address or hostname appears instead of the string <host-ip>, and observe
that sn2 is again RUNNING.

In addition to executing the show topology command, you can also verify that the previously
removed sn2 directory structure has been recreated and repopulated; that is, directories and
files like the following should again exist:

/opt/ondb/var/kvroot

 config2.xml*

 /example-store
 /log

 admin2*
 rg1-rn2*
 sn2*
 config.rg1-rn2

 /sn2
 config.xml
 /admin2
 /env

/tmp/sn2/disk1/ondb/data
 /rg1-rn2
 /env
 00000000.jdb

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 42

And finally, verify that the data stored previously by the original sn2 has been recovered; that
is,

> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches

Example 2: New SN Takes Over Duties of Existing SN

In this example, the second replacement procedure described above will be employed to
replace/upgrade an existing, healthy storage node (sn2 in this case) with a new storage node
that will take over the duties of the old storage node. As indicated previously, the assumptions
and setup for this example are identical to the first example's assumptions and setup. Thus,
after setting up this example as previously specified, start an administrative CLI connected
to the admin service associated with the sn1 storage node; that is, substituting the actual IP
address or hostname for the string <host-ip>, execute the following command:

> java -jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host <host-ip> -port 13230

Then, from the administrative CLI just started, execute the show pools and show topology
commands; that is,

kv-> show pools
kv-> show topology

which should, respectively, produce output that looks something like:

AllStorageNodes: sn1 sn2 sn3
snpool: sn1 sn2 sn3

and

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn: [id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 RUNNING
 [rg1-rn2] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

Note

At this point, the pool to join is named "snpool", and the id of the zone to deploy to is
"1".

Next, recall that in a production environment, where the old and new SNs run on separate
physical machines, the old SN would typically remain up – servicing requests – until the last
step of the procedure. In this example though, the old and new SNs run on a single machine,
where the appearance of separate machines and file systems is simulated. Because of this, the

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 43

next step to perform in this example is to programmatically shut down the sn2 storage node
by executing the following command:

> java -jar /opt/ondb/kv/lib/kvstore.jar stop \
 -root /opt/ondb/var/kvroot \
 -config config2.xml

After stopping the sn2 storage node, you might (optionally) execute the show topology
command and observe that the sn2 storage node is no longer RUNNING; rather, it is
UNREACHABLE, but will continue to be referenced in the topology until the node is explicitly
removed from the topology (see below). For example, from the administrative CLI, execute
the following command:

kv-> show topology

which should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 UNREACHABLE
 [rg1-rn2] UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

At this point, preparation of the new, replacement sn4 storage node can begin; where steps 4,
5, and 6 of the procedure have already been completed, since a single machine hosts both the
old and new SN in this example.

With respect to the next step (7), recall that when employing this procedure, step 7 requires
that the path of the replacement SN's data directory must be identical to the path used by the
SN to be replaced. But in this example, the same disk and file system is used for the location
of the data stored by each SN. Therefore, the storage directory that would be created for
the new sn4 storage node in step 7 already exists and has been populated by the old sn2
storage node. Thus, to perform step 7 in this example's simulated environment, as well as to
support verification (see below), after shutting down sn2 above, the storage directory used by
that node should be renamed; which makes room for the storage directory that needs to be
provisioned in step 7 for sn4. That is, type the following at the command line:

> mv /tmp/sn2 /tmp/sn2_old

Note

The renaming step above is performed only for this example, and would never be
performed in a production environment.

Next, provision the storage directory that sn4 will use; where the path specified must be
identical to the original path of the storage directory used by sn2. That is,

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 44

> mkdir -p /tmp/sn2/disk1/ondb/data

The next step to perform when preparing the replacement SN is to generate a boot
configuration for the new storage node by executing the makebootconfig command
(remember to substitute the actual IP address or hostname for the string <host-ip>):

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config4.xml \
 -port 13260 \
 -harange 13262,13265 \
 -admin 13261 \
 -memory_mb 100 \
 -capacity 1 \
 -storagedir /tmp/sn2/disk1/ondb/data

which will produce a configuration file for the new storage node; /opt/ondb/var/kvroot/
config4.xml.

After creating the configuration above, use that new configuration to start a new instance of
the KVStore storage node agent (SNA), along with its managed services; that is,

> nohup java -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config4.xml &

After executing the command above, use the administrative CLI to deploy a new storage node
by executing the following command (with the actual IP address or hostname substituted for
the string <host-ip>):

kv-> plan deploy-sn -znname Zone1 -host <host-ip> -port 13260 -wait

As explained previously, because "sn3" was the id assigned (by the store) to the most recently
deployed storage node, the next storage node that is deployed – that is, the storage node
deployed by the command above – will be given "sn4" as its assigned id. After deploying the
sn4 storage node above, you might then (optionally) execute the show pools command from
the administrative CLI and observe that the new storage node has joined the default pool
named "AllStorageNodes"; for example:

kv-> show pools

which should produce output that looks like the following:

AllStorageNodes: sn1 sn2 sn3 sn4
snpool: sn1 sn2 sn3

where upon deployment, although sn4 has joined the pool named "AllStorageNodes", it has not
yet joined the pool named "snpool".

Next, after successfully deploying the sn4 storage node, use the CLI to join the pool named
"snpool"; that is:

kv-> pool join -name snpool -sn sn4

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 45

After deploying the new storage node and joining the pool named "snpool", using the
administrative CLI, you might (optionally) execute the show topology command followed by
the show pools command; and then observe that the new storage node has been deployed to
the store and has joined the pool named "snpool"; for example,

kv-> show topology
kv-> show pools

which, given the initial assumptions, should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 UNREACHABLE
 [rg1-rn2] UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

 sn=[sn4] zn:[id=1 name=Zone1] host-sn4 capacity=1 RUNNING

and

AllStorageNodes: sn1 sn2 sn3 sn4
snpool: sn1 sn2 sn3 sn4

The output above shows that the sn4 storage node has been successfully deployed (is
RUNNING) and is now a member of the pool named "snpool". But it does not yet include an RN
service corresponding to sn4. Such a service will not appear in the store's topology until sn2 is
migrated to sn4 (see below).

At this point, after the sn4 storage node is deployed and has joined the pool named "snpool",
and the old sn2 storage node has been stopped, sn4 is ready to take over the duties of sn2.
This is accomplished by migrating the sn2 services and data to sn4 by executing the following
command from the administrative CLI (remembering to substitute the actual IP address or
hostname for the string<host-ip>):

kv-> plan migrate-sn -from sn2 -to sn4 -admin-port 13261 -wait

Note

Because the old sn2 storage node was running an admin service, the admin-port
argument must be specified to the plan migrate command above; and the value
to use for that argument should be the value that was used previously for the
admin argument when executing the makebootconfig command to generate the
configuration for sn4.

After migrating sn2 to sn4 you might (optionally) execute the show topology command again
and observe that the rg1-rn2 service has moved from sn2 to sn4 and is now RUNNING; that is,

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 46

kv-> show topology

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

 sn=[sn4] zn:[id=1 name=Zone1] host-sn4 capacity=1 RUNNING
 [rg1-rn2] RUNNING

Finally, after the migration process is complete, remove the old sn2 storage node from the
store's topology; which can be accomplished by executing the plan remove-sn command
from the administrative CLI in the following way:

kv-> plan remove-sn -sn sn2 -wait

Verification

To verify that sn2 has been successfully replaced/upgraded by sn4, first execute the show
topology command from the previously started administrative CLI; that is,

kv-> show topology

The output is like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn3] RUNNING

 sn=[sn4] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn2] RUNNING

Here the actual IP address or hostname appears instead of the string <host-ip>, and only sn4
appears in the output rather than sn2.

In addition to executing the show topology command, you can also verify that the expected
sn4 directory structure is created and populated; that is, directories and files like the
following should exist:

/opt/ondb/var/kvroot

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 47

 config4.xml

 /example-store
 /log

 sn4*

 /sn4
 config.xml
 /admin2
 /env

/tmp/sn2/disk1/ondb/data
 /rg1-rn2
 /env
 00000000.jdb

You can also verify that the data stored previously by sn2 has been migrated to sn4; that is:

> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches

Note

Although sn2 was stopped and removed from the topology, the data files created and
populated by sn2 in this example were not deleted. They were moved under the /
tmp/sn2_old directory. Thus, the old sn2 storage directory and data files can still be
accessed. That is:

/tmp/sn2_old/disk1/ondb/data
 /rg1-rn2
 /env
 00000000.jdb

And the original key/value pair should still exist in the old sn2 data file; that is,

> grep "HELLO WORLD" \
 /tmp/sn2_old/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file
 /tmp/sn2_old/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 matches

Finally, the last verification step that can be performed is intended to show that the new
sn4 storage node has taken over the duties of the old sn2 storage node. This step consists
of writing a new key/value pair to the store and then verifying that the new pair has been
written to the data files of sn1, sn3, and sn4, as was originally done with sn1, sn3, and sn2
prior to replacing sn2. To perform this step, you can use the KVStore client shell utility in
the same way as described in Setup (page 32), when the first key/value pair was initially
inserted. That is, you can execute the following (remembering to substitute the actual IP
address or hostname for the <host-ip> string):

Library Version 12.1.3.0 Hardware Monitoring

7/14/2014 Oracle NoSQL Database Run Book Page 48

> java -jar /opt/ondb/kv/lib/kvstore.jar runadmin\
 -host <host-ip> -port 13230 -store example-store

kv-> get -all
 /FIRST_KEY
 HELLO WORLD

kv-> put -key /SECOND_KEY -value "HELLO WORLD 2"
 Put OK, inserted.

kv-> get -all
 /SECOND_KEY
 HELLO WORLD 2
 /FIRST_KEY
 HELLO WORLD

After performing the insertion, use the "grep" command to verify that the new key/value pair
was written by sn1, sn3, and sn4; and of course, the old sn2 data file still only contains the
first key/value pair. That is,

> grep "HELLO WORLD 2" /tmp/sn1/dsk1/ondb/data/rg1-rn1/env/00000000.jdb
 Binary file /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb matches
> grep "HELLO WORLD 2" /tmp/sn2/dsk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches
> grep "HELLO WORLD 2" /tmp/sn3/dsk1/ondb/data/rg1-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb matches
> grep "HELLO WORLD 2"
 /tmp/sn2_old/dsk1/ondb/data/rg1-rn2/env/00000000.jdb

7/14/2014 Oracle NoSQL Database Run Book Page 49

Appendix A. Third Party Licenses
All of the third party licenses used by Oracle NoSQL Database are described in the
LICENSE.txt file, which you can find in your KVHOME directory.

	Oracle NoSQL Database Run Book
	Table of Contents
	Preface
	Conventions Used in This Book

	Chapter 1. Introduction
	Chapter 2. Software Monitoring
	System Log File Monitoring
	SNMP and JMX Monitoring

	Monitoring Metrics for Storage Nodes
	Monitoring Metrics for Replication Nodes
	Monitoring Metrics for Administration Nodes

	Chapter 3. Hardware Monitoring
	Monitoring for Hardware Faults
	The Network
	Correlating Network Failure to NoSQL Log Events
	Recovering from Network Failure

	Persistent Storage
	Detecting and Correlating Persistent Storage Failures to NoSQL Log Events
	Resolving Storage Device Failures
	Procedure for Replacing a Failed Persistent Storage Device
	Example

	Servers
	Detecting and Correlating Server Failures to NoSQL Log Events
	Resolving Server Failures
	Terminology Review
	Assumptions
	Replacement Procedure 1: Replace SN with Identical SN
	Replacement Procedure 2: New SN Takes Over Duties of Removed SN
	Examples
	Setup
	Example 1: Replace a Failed SN with an Identical SN
	Verification
	Example 2: New SN Takes Over Duties of Existing SN
	Verification

	Appendix A. Third Party Licenses

