
Oracle

NoSQL Database
Security Guide

12c Release 1
Library Version 12.1.3.0

Legal Notice

Copyright © 2011, 2012, 2013, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Published 7/14/2014

7/14/2014 Oracle NoSQL Database Security Guide Page iii

Table of Contents
Preface ... v

Conventions Used in This Book .. v
1. Introducing Oracle NoSQL Database Security .. 1
2. Security Configuration ... 2

Security Configuration Overview .. 2
Configuring Security with Makebootconfig .. 4
Configuring Security with Securityconfig .. 5

Creating the security configuration .. 5
Adding the security configuration .. 6
Removing the security configuration ... 6
Merging truststore configuration ... 7

3. Performing a Secure Oracle NoSQL Database Installation .. 9
Single Node Secure Deployment .. 9

Adding Security to a New Installation ... 9
Adding Security to an Existing Installation .. 11

Multiple Node Secure Deployment .. 14
Adding Security to a New Installation .. 14
Adding Security to an Existing Installation .. 18

4. External Password Storage ... 21
Oracle Wallet ... 21
Password store file ... 21

5. Security.xml parameters ... 23
Top-level parameters .. 23
Transport parameters .. 24

6. Encryption .. 26
SSL model ... 26
SSL communication properties ... 27

7. Configuring Authentication .. 29
User management .. 29

User creation ... 29
User modification .. 30
User removal ... 31
User status .. 31
User login ... 31

Sessions .. 32
8. Security Policies ... 33

Security Policy Modifications ... 33
9. Keeping Oracle NoSQL Database Secure ... 35

Guidelines for Securing the Configuration ... 35
Guidelines for Deploying Secure Applications ... 35
Guidelines for Securing the SSL protocol .. 35
Guidelines for using JMX securely ... 36
Guidelines for Updating Keystore Passwords ... 36
Guidelines for Updating the SSL key/certificate .. 37
Guidelines for Operating System Security .. 38

A. SSL keystore generation ... 39

7/14/2014 Oracle NoSQL Database Security Guide Page iv

B. Third Party Licenses .. 41

7/14/2014 Oracle NoSQL Database Security Guide Page v

Preface
This document describes how you can configure security for Oracle NoSQL Database using the
default database features.

This book is aimed at the systems administrator responsible for the security of an Oracle
NoSQL Database installation.

Conventions Used in This Book

The following typographical conventions are used within this manual:

Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Note

Finally, notes of special interest are represented using a note block such as this.

7/14/2014 Oracle NoSQL Database Security Guide Page 1

Chapter 1. Introducing Oracle NoSQL Database
Security

Oracle NoSQL Database can be configured securely. In a secure configuration, network
communications between NoSQL clients, utilities, and NoSQL server components are encrypted
using SSL/TLS, and all processes must authenticate themselves to the components to which
they connect.

There are two levels of security to be aware of. These are network security, which provides
an outer layer of protection at the network level, and user authentication/authorization.
Network security is configured at the file system level typically during the installation process,
while user authentication/authorization is managed through NoSQL utilities.

You can use the default Oracle NoSQL Database features to configure security in the following
areas for your Oracle NoSQL Database installation:

• Security Configuration Utility. Allows you to configure and add security to a new or
to an existing Oracle NoSQL Database installation.

• Authentication methods. Oracle NoSQL Database provides password authentication for
users and systems.

• Encryption. You can encrypt data on the network to prevent unauthorized access to that
data.

• External Password Storage. Oracle NoSQL Database provides two types of external
password storage methods that you can manipulate (one type for CE deployments).

• Security Policies. Oracle NoSQL Database allows you to set up behaviors in order to
ensure a secure environment.

In addition, Keeping Oracle NoSQL Database Secure (page 35) provides guidelines that you
should follow when you secure your Oracle NoSQL Database installation.

7/14/2014 Oracle NoSQL Database Security Guide Page 2

Chapter 2. Security Configuration
This chapter describes how to use either the makebootconfig or securityconfig tool to
perform the security configuration of your store. If you are installing a store with security
for the first time, you can skip ahead to the next chapter Performing a Secure Oracle NoSQL
Database Installation (page 9).

Note

For simpler use cases (for example, lab environments) it is possible to perform a basic
installation of your store by explicitly opting out of security on the command line. If
you do this, your store loses all the security features described in this book. For more
information see Configuring Security with Makebootconfig (page 4).

Security Configuration Overview

To set up security, you need to create an initial security configuration. To do this, you can
run securityconfig before, after or as part of the makebootconfig process but before
starting the SNA on an initial node. You should not create a security configuration at each
node. Instead, you should distribute the initial security configuration across all the Storage
Nodes in your store. If the stores do not share a common security configuration they will be
unable to communicate with one another.

Note

The makebootconfig utility embeds the functionality of securityconfig tool.

This tool creates a set of security files based on the standard configuration. It is possible to
perform the same tasks manually, and advanced security configuration might require manual
setup, but using this tool helps to ensure a consistent setup. For more information on the
manual setup, see SSL keystore generation (page 39).

Note

It is possible to modify the security configuration after it is created in order to use a
non-standard configuration. It is recommended that you use a standard configuration.

Those security files are generated, by default, within a directory named "security". In a secure
configuration, the bootstrap configuration file for a Storage Node includes a reference to that
directory, which must be within the KVROOT directory for the Storage Node. The security
directory contains:

security/security.xml
security/store.keys
security/store.trust
security/store.passwd (CE or EE installations)
security/store.wallet (EE installations only)
security/store.wallet/cwallet.sso (EE installations only)

Library Version 12.1.3.0 Security Configuration

7/14/2014 Oracle NoSQL Database Security Guide Page 3

security/client.security
security/client.trust

where:

• security.xml

A configuration file that tells the Oracle NoSQL Database server how to apply security.

• store.keys

A Java keystore file containing one or more SSL/TLS key pairs. This keystore is protected by
a keystore password, which is recorded in an accompanying password store. The password
store may be either an Oracle Wallet or a FileStore. The password is stored under the alias
"keystore" in the password store. This file should be accessible only by the Oracle NoSQL
Database server processes, and not to NoSQL clients.

• store.trust

A Java truststore file, which is a keystore file that contains only public certificates, and no
private keys.

• store.passwd (CE or EE installations)

A password file that acts as the password store for a Community Edition (CE) installation. It
contains secret information that should be known only to the server processes. Make sure
the password file is readable and writable only by the Oracle NoSQL Database server. The
file should not be copied to client machines.

For Enterprise Edition (EE) installations, Oracle Wallet usage is preferred over the password
file option.

• store.wallet (EE installations only)

An Oracle Wallet directory that acts as the password store for an Enterprise Edition
(EE) installation. It contains secret information that should be known only to the server
processes. Make sure the directory and its contents are readable and writable only by the
NoSQL DB server. The file should not be copied to client machines.

• cwallet.sso (EE installations only)

The wallet password storage file.

• client.security

A security configuration file that captures the communication transport properties for
connecting clients to KVStore.

The generated client.security file should be copied to and used by Oracle NoSQL Database
clients when connecting to the KVStore.

• client.trust

Library Version 12.1.3.0 Security Configuration

7/14/2014 Oracle NoSQL Database Security Guide Page 4

A truststore file used by clients is generated.

The generated client.trust file should be copied to and used by Oracle NoSQL Database
clients when connecting to the KVStore.

Note

In a multi-host store environment, the security directory and all files contained in it
should be copied to each server that will host a Storage Node.

Configuring Security with Makebootconfig

Use the makebootconfig command with the required -store-security option to set up the
basic store configuration with security:

java -jar KVHOME/lib/kvstore.jar makebootconfig
-root <kvroot> -port <port>
-admin <adminport> -host <hostname> -harange <harange>
-store-security configure -capacity <capacity>

where -store-security can have the following options:

• -store-security none

No security will be used. If a directory named "security" exists, a warning message will be
displayed. When you opt out of security, you lose all the security features in your store;
you are not able to set password authentication for users and systems, encrypt your data to
prevent unauthorized access, etc.

• -store-security configure

Security will be used and the security configuration utility will be invoked as part of
the makebootconfig process. If the security directory already exists, an error message is
displayed, otherwise the directory will be created.

For script-based configuration you can use the -kspwd<password> option to allow tools
to specify the keystore password on the command line. If it is not specified, the user is
prompted to enter the password.

Use the -pwdmgr option to select a password manager implementation. Its usage is
introduced later in this section.

• -store-security enable

Security will be used. You will need to configure security either by utilizing the security
configuration utility or by copying a previously created configuration from another
system.

For more information on configuring security with makebootconfig, see Adding Security to a
New Installation (page 9).

Library Version 12.1.3.0 Security Configuration

7/14/2014 Oracle NoSQL Database Security Guide Page 5

Configuring Security with Securityconfig

You can also run the securityconfig tool before or after the makebootconfig process by
using the following command:

java -jar KVHOME/lib/kvstore.jar securityconfig

For more information on creating, adding, removing or merging the security configuration
using securityconfig, see the following sections.

Creating the security configuration

You can use the config create command to create the security configuration:

config create
-root <secroot> [-secdir <security dir>]
[-pwdmgr { pwdfile | wallet }]
[-param <param=value>]

where:

• -root <secroot>

Specifies the directory in which the security configuration will be created. It is not required
that this directory be a full KVROOT, but the directory must exist.

• -secdir <security dir>

Specifies the name of the directory within the KVROOT that will hold the security
configuration. This must be specified as a name relative to the specified secroot. If not
specified, the default value is "security".

• -pwdmgr [pwdfile | wallet]

Indicates the password manager mechanism used to hold passwords that are needed for
access to keystores, etc.

where -pwdmgr can have the following options:

• -pwdmgr pwdfile

Indicates that the password store is a read-protected clear-text password file. This is
the only available option for Oracle NoSQL Database CE deployments. You can specify an
alternate implementation. For more information on pwdfile manipulation, see Password
store file (page 21)

• -pwdmgr wallet

Specifies Oracle Wallet as the password storage mechanism. This option is only available
in the Oracle NoSQL Database EE version. For more information on Oracle wallet
manipulation, see Oracle Wallet (page 21)

Library Version 12.1.3.0 Security Configuration

7/14/2014 Oracle NoSQL Database Security Guide Page 6

• -param <param=value>

A repeatable argument that allows configuration defaults to be overridden. The value
may be either a simple parameter, such as "truststore", or a qualified parameter such as
"client:serverKeyAlias". If specified in qualified form, the qualifier (for example, "client")
names a transport within the security configuration, and the assignment is specific to
that transport. If in simple form, it applies to either the securityParams structure or to all
transports within the file, depending on the type of parameter.

For more information on configuring security with securityconfig, see Adding Security to an
Existing Installation (page 11).

Adding the security configuration

You can use the config add-security command to add the security configuration you
created earlier:

config add-security
-root <kvroot> [-secdir <security dir>]
[-config <config.xml>]

Note

When running this command, the securityconfig tool will verify the existence of the
referenced files and will update the specified bootstrap configuration file to refer to
the security configuration. This process is normally done with the KVStore instance
stopped, and must be performed on each Storage Node of the store.

where:

• -root <kvroot>

A KVStore root directory must be provided as an argument.

• -secdir <security dir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not specified, the
default value is "security".

• -config <config.xml>

Specifies the bootstrap configuration file that is to be updated. This must be specified as a
name relative to the KVROOT. If not specified, the default value is "config.xml".

Removing the security configuration

If you want to disable security for some reason in an existing installation, you can use the
config remove-security command:

config remove-security
-root <kvroot> [-config <config.xml>]

Library Version 12.1.3.0 Security Configuration

7/14/2014 Oracle NoSQL Database Security Guide Page 7

Note

When running this command, the securityconfig tool will update the specified
bootstrap configuration file to refer to the security configuration. This process is
normally done with the KVStore instance stopped, and must be performed on each
Storage Node of the store.

where:

• -root <kvroot>

A KVStore root directory must be provided as an argument.

• -config <config.xml>

Specifies the bootstrap configuration file that is to be updated. This must be specified as a
name relative to the KVROOT. If not specified, the default value is "config.xml".

Merging truststore configuration

If you want to merge truststore entries from one security configuration into another security
configuration use the config merge-trust command. This command is helpful when
performing security maintenance, particularly when you need to update the SSL key/
certificate. For more information, see Guidelines for Updating the SSL key/certificate (page
37)

config merge-trust
-root <secroot> [-secdir <security dir>]
-source-root <secroot> [-source-secdir <security dir>]

Note

When running this command, the securityconfig tool will verify the existence of the
referenced files and will combine trust entries from the source security configuration
into the primary security configuration.

where:

• -root <secroot>

Specifies the directory that contains the security configuration that will be updated. It is
not required that this directory be a full KVROOT, but the directory must exist and contain
an existing security configuration.

• -secdir <security dir>

Specifies the name of the directory within the secroot that holds the security configuration.
This must be specified as a name relative to the secroot. If not specified, the default value
is "security".

• -source-root <secroot>

Library Version 12.1.3.0 Security Configuration

7/14/2014 Oracle NoSQL Database Security Guide Page 8

Specifies the directory that contains the security configuration that will provide new trust
information. It is not required that this directory be a full KVROOT, but the directory must
exist and must contain an existing security configuration.

• -source-secdir <security dir>

Specifies the name of the security directory within the source secroot that will provide new
trust information. If not specified, the default value is "security".

7/14/2014 Oracle NoSQL Database Security Guide Page 9

Chapter 3. Performing a Secure Oracle NoSQL
Database Installation

It is possible to add security to a new or to an existing Oracle NoSQL Database installation.

To add security to a new or to an existing Oracle NoSQL Database single host deployment, see
the next section. For multiple node deployments, see Multiple Node Secure Deployment (page
14).

Single Node Secure Deployment
The following examples describe how to add security to a new or to an existing Oracle NoSQL
Database single host deployment.

Adding Security to a New Installation

To install Oracle NoSQL Database securely:

1. Run the makebootconfig utility with the required -store-security option to set up the
basic store configuration with security:
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-admin 5001 -host node01 -harange 5010,5020 \
-store-security configure -pwdmgr pwdfile -capacity 1

2. In this example, -store-security configure is used, so the security configuration
utility is run as part of the makebootconfig process and you are prompted for a password
to use for your keystore file:
Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. In this case, the
password file is used, and the securityconfig tool will automatically generate the
following security related files:
Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/client.trust
security/client.security
security/store.keys
security/store.trust
security/store.passwd
security/security.xml

Note
In a multi-host store environment, the security directory and all files contained in
it should be copied to each server that will host a Storage Node.

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 10

4. Start the Storage Node Agent (SNA):
nohup java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are no
user definitions available against which to authenticate access. In order to reduce risk of
unauthorized access, an admin will only allow you to connect to it from the host on which
it is running. This security measure is not a complete safeguard against unauthorized
access. It is important that you do not provide local access to machines running KVStore.
In addition, you should perform steps 5, 6 and 7 soon after this step in order to minimize
the time period in which the admin might be accessible without full authentication.
For more information on maintaining a secure store see Guidelines for Securing the
Configuration (page 35).

5. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous

6. Use the configure -name command to specify the name of the KVStore that you want to
configure:
kv-> configure -name mystore
Store configured: mystore

7. Create an admin user. In this case, user root is defined:
kv-> plan create-user -name root -admin -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 6, waiting for completion...
Plan 6 ended successfully

For more information on user creation and administration, see User management (page
29).

8. Create a new password file to store the credentials needed to allow clients to login as the
admin user (root):
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig \
pwdfile create -file KVROOT/security/login.passwd
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig pwdfile secret \
-file KVROOT/security/login.passwd -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 11

OK

Note

The password must match the one set for the admin in the previous step.

For more information on user creation and administration, see User management (page
29).

9. At this point, it is possible to connect to the store as the root user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (mylogin.txt) is used. To login, use the following command:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security mylogin.txt
Logged in admin as root

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.pwdfile.file=KVROOT/security/login.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User login (page 31).

Adding Security to an Existing Installation

To add security to an existing Oracle NoSQL Database installation:

1. Shut down the KVStore instance:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar stop \
-root KVROOT

2. Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig

3. Use the config create command with the -pwdmgr option to specify the mechanism
used to hold passwords that is needed for access to the stores. In this case, Oracle Wallet
is used. Oracle Wallet is only available in the Oracle NoSQL Database EE version. CE
deployments should use the pwdfile option instead.

config create -pwdmgr wallet -root KVROOT

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 12

Enter a password for the Java KeyStore:

4. Enter a password for your store and then reenter it for verification. The configuration tool
will automatically generate some security related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/security.xml
security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/client.security
security/client.trust

Note

In a multi-host store environment, the security directory and all files contained in
it should be copied to each server that will host a Storage Node.

5. Use the config add-security command to add the security configuration you just
created:

security-> config add-security -root KVROOT
-secdir security -config config.xml
Configuration updated.

Note

When running this command, the securityconfig tool will verify the existence
of the referenced files and will update the specified bootstrap configuration file
to refer to the security configuration. This process is normally done with the
KVStore instance stopped, and must be performed on each Storage Node of the
store.

6. Start the Storage Node Agent (SNA):

nohup java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

7. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous.

This command sets SSL as a connection method and names a copy of the generated
truststore file (client.security). For more information on SSL properties, see SSL
communication properties (page 27).

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 13

8. Create an admin user. In this case, user root is defined:

kv-> plan create-user -name root -admin -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 8, waiting for completion...
Plan 8 ended successfully

For more information on user creation and administration, see User management (page
29).

9. Create a new wallet file to store the credentials needed to allow clients to login as the
admin user (root):

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/login.wallet
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created
OK

Note

The password must match the one set for the admin in the previous step.

For more information on user creation and administration, see User management (page
29).

10. At this point, it is possible to connect to the store as the root user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, the oracle.kv.security property is used. To login use the following
command:

java -Xmx256m -Xms256m \
-Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as root

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 14

oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User login (page 31).

Multiple Node Secure Deployment

The following examples describe how to add security to a new or to an existing Oracle NoSQL
Database multiple host deployment.

Adding Security to a New Installation

To install an Oracle NoSQL Database three node, capacity=3 (3x3) secure deployment:

1. Run the makebootconfig utility with the required -store-security option to set up the
basic store configuration with security:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-admin 5001 -host node01 -harange 5010,5020 \
-store-security configure -pwdmgr wallet -capacity 3

2. In this example, -store-security configure is used, so the security configuration
utility is run as part of the makebootconfig process and you are prompted for a password
to use for your keystore file:

Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. For example, using
wallet, the securityconfig tool will automatically generate the following security
related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/security.xml
security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/client.security
security/client.trust

4. In a multi-host store environment, the security directory and all files contained in it
should be copied from the first node to each server that will host a Storage Node, to
setup internal cluster authentication. For example, the following commands assume that
the different nodes are visible and accessible on the current node (node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 15

Note

You may need to use a remote copying command, like scp, to do the copying if
the files for the different nodes are not visible on the current node.

5. Enable security on the other two nodes using the -store-security enable command:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node02 \
-port 6000 \
-admin 6001 \
-harange 6010,6020 \
-capacity 3 \
-store-security enable \
-pwdmgr wallet

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node03 \
-port 7000 \
-admin 7001 \
-harange 7010,7020 \
-capacity 3 \
-store-security enable \
-pwdmgr wallet

6. Start the Storage Node Agent (SNA) on each node:

nohup java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

7. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:

java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous

8. Use the configure -name command to specify the name of the KVStore that you want to
configure:

kv-> configure -name mystore
Store configured: mystore

9. Create an admin user. In this case, user root is defined:

kv-> plan create-user -name root -admin -wait

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 16

Enter the new password: ********
Re-enter the new password: ********
Executed plan 6, waiting for completion...
Plan 6 ended successfully

For more information on user creation and administration, see User management (page
29).

10. Create the wallet to enable client credentials for the admin user (root):

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/login.wallet
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created
OK

Note

The password must match the one set for the admin in the previous step.

11. At this point, it is possible to connect to the store as the root user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (adminlogin.txt) is used. To login, use the following
command:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security adminlogin.txt
Logged in admin as root

The file adminlogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User login (page 31).

12. Once logged in as admin, you can create some users:

kv-> plan create-user -name user1 -wait

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 17

Enter the new password: ********
Re-enter the new password: ********
Executed plan 7, waiting for completion...
Plan 7 ended successfully

kv-> plan create-user -name user2 -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 8, waiting for completion...
Plan 8 ended successfully

13. Create the wallet to enable client credentials for each user. Typically you will reuse this
wallet for all your regular users:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/users.wallet
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/users.wallet -set -alias user1
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created
OK
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/users.wallet -set -alias user2
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created OK

Note

Each password must match the one set for each user in the previous step. This
wallet is independent from the admin one. It is possible to store admin/user
passwords using the same wallet.

14. At this point, it is possible to connect to the store as a user. To login, you can use either
the -username <user> runadmin argument or specify the "oracle.kv.auth.username"
property in the security file.

In this example, a security file (userlogin.txt) is used. To login, use the following
command:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security userlogin.txt
Logged in admin as user1

The file userlogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 18

oracle.kv.auth.username=user1
oracle.kv.auth.wallet.dir=KVROOT/security/users.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User login (page 31).

Adding Security to an Existing Installation

To add security to an existing three node, capacity=3 (3x3) Oracle NoSQL Database
installation:

1. Shut down the KVStore instance on each node:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar stop \
-root KVROOT

2. Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig

3. Use the config create command with the -pwdmgr option to specify the mechanism
used to hold passwords that is needed for access to the stores. In this case, Oracle Wallet
is used:

config create -pwdmgr wallet -root KVROOT
Enter a password for the Java KeyStore:

4. Enter a password for your store and then reenter it for verification. The configuration tool
will automatically generate some security related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/security.xml
security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/client.security
security/client.trust

5. In a multi-host store environment, the security directory and all files contained in it
should be copied from the first node to each server that will host a Storage Node, to
setup internal cluster authentication. For example, the following commands assume that
the different nodes are visible and accessible on the current node (node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 19

Note

You may need to use a remote copying command, like scp, to do the copying if
the files for the different nodes are not visible on the current node.

6. Use the config add-security command on each node to add the security configuration
you just created:
security-> config add-security -root KVROOT -secdir security

Note

When running this command, the securityconfig tool will verify the existence
of the referenced files and will update the specified bootstrap configuration file
to refer to the security configuration. This process is normally done with the
KVStore instance stopped, and must be performed on each Storage Node of the
store.

7. Start the Storage Node Agent (SNA) on each node:
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

8. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security

This command sets SSL as a connection method and names a copy of the generated
truststore file (client.security). For more information on SSL properties, see SSL
communication properties (page 27).

9. Create an admin user. In this case, user root is defined:
kv-> plan create-user -name root -admin -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 8, waiting for completion...
Plan 8 ended successfully

For more information on user creation and administration, see User management (page
29).

10. Create the wallet to enable client credentials for the admin user (root):
java -Xmx256m -Xms256m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/login.wallet
java -Xmx256m -Xms256m \

Library Version 12.1.3.0 Performing a Secure Oracle NoSQL Database
Installation

7/14/2014 Oracle NoSQL Database Security Guide Page 20

-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created
OK

Note

The password must match the one set for the admin in the previous step.

11. At this point, it is possible to connect to the store as the root user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, the oracle.kv.security property is used. To login use the following
command:

java -Xmx256m -Xms256m \
-Doracle.kv.security=adminlogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as root >

The file adminlogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User login (page 31).

7/14/2014 Oracle NoSQL Database Security Guide Page 21

Chapter 4. External Password Storage
Depending on the type of store deployment, there are two ways passwords can be externally
stored. For Enterprise Edition (EE) deployments, Oracle Wallet is used. For Community Edition
(CE) deployments, a simple read protected clear-text password file is used.

In the most basic mode of operation, external passwords are used only by the server to track
the keystore password. User passwords, which are stored securely within the database, can
also be supplied during client authentication.

When a password store is used as a component of a login file, the alias that is used for either
password store type should be the username to which the password applies. For example, for
a user named root, the password should be stored under the alias root.

When a password store is used as part of the server, the alias keystore is used. The user
password store should be a completely different file than the one in the security directory
located under KVROOT.

Oracle Wallet

The following commands provide functionality to manipulate Oracle wallet stores within the
securityconfig tool. These commands are available in EE only. For more information on the
securityconfig tool, see Configuring Security with Securityconfig (page 5).

To create a new auto-login wallet, run the wallet create command:

wallet create
-dir <wallet directory>

Auto-login wallets store passwords in an obfuscated state. Access to the wallet is secured
against reading by unauthorized users using the OS-level login.

To manipulate secrets (passwords), which are associated with a name (alias), run the wallet
secret command:

wallet secret
-dir <wallet directory>
{-set | -delete} -alias <alias>

If the -set option is specified, the user is prompted for a new password for the specified alias
and required to verify the new secret.

If the -delete option is specified, the secret is deleted from the store.

Special considerations should be taken if Oracle wallet is used to hold a user password and
you are deploying your Oracle NoSQL Database. For more information, see Guidelines for
Deploying Secure Applications (page 35).

Password store file

The following commands are used to create and manipulate CE password store files within
the securityconfig tool. CE password store files managed though this interface are never

Library Version 12.1.3.0 External Password Storage

7/14/2014 Oracle NoSQL Database Security Guide Page 22

password protected. For more information on the securityconfig tool, see Configuring
Security with Securityconfig (page 5).

To create a new password store file, run the pwdfile create command:

pwdfile create
-file <password store file>

To manipulate secrets (passwords), which are associated with a name (alias), run the pwdfile
secret command:

pwdfile secret
-file <password store file>
{-set | -delete} -alias <alias>

If the user specifies the -set option, the user is prompted for a new password for the specified
alias and required to verify the new password.

If the -delete option is specified, the alias is deleted from the store.

7/14/2014 Oracle NoSQL Database Security Guide Page 23

Chapter 5. Security.xml parameters
This chapter describes the parameters that can be set to the security.xml configuration
file. This file is generated by makebootconfig or securityconfig and tells the Oracle NoSQL
Database server how to apply security.

The security.xml file specifies parameters that primarily control network communications. It
contains top-level parameters, plus nested transport parameters. A transport is a grouping of
parameter settings that are specific to a particular type of network connection.

Note

A subset of all the configuration options listed below related to SSL can be specified
through Java system properties, security file properties, or through the KVStoreConfig
API. For more information, see SSL communication properties (page 27).

Top-level parameters

The following top-level parameters can be set to the security.xml file:

• internalAuth

Specifies how internal systems authenticate. This parameter must be set to SSL.

• keystore

Identifies the keystore file within the security directory. This parameter is normally set to
store.keys.

• keystoreType

Identifies the type of keystore that the keystore property references. If not set, the Java
default keystore type is assumed.

• securityEnabled

To enable security this parameter must be set to true.

• certMode

Specifies the key/certificate management model in use. This must be set to "shared".

• truststore

Identifies the truststore file within the security directory. This is normally set to store.trust.

• keystoreType

Identifies the type of keystore that the truststore property references. If not set, the Java
default keystore type is assumed.

Library Version 12.1.3.0 Security.xml parameters

7/14/2014 Oracle NoSQL Database Security Guide Page 24

• walletDir

Identifies a directory within the security directory that contains a wallet password store,
which in turn holds the password for the keystore.

• passwordFile

Identifies a file within the security directory that contains a file password store, which in
turn holds the password for the keystore.

Transport parameters

There are three standard transport types:

• ha

Controls the communications between the data replication layer.

• client

Controls most RMI communication.

• internal

Controls the SSL internal authentication mechanism.

The following parameters can be set and associated to a transport type:

• transportType

This parameter should be set to SSL.

• serverKeyAlias

The keystore alias that identifies the keypair used by the server end of a connection.

• clientKeyAlias

The keystore alias that identifies the keypair used by the client end of a connection.

• clientAuthRequired

Should always be true for ha and internal transports and should be false for client
transports.

• clientIdentityAllowed

When clientAuthRequired is true, this specifies what client identification check should be
applied. This should be set to dnmatch(XXX) where XXX is the Distinguished name from the
client certificate.

• serverIdentityAllowed

Library Version 12.1.3.0 Security.xml parameters

7/14/2014 Oracle NoSQL Database Security Guide Page 25

This specifies what server verification should be performed. This should normally be set to
dnmatch(XXX) where XXX is the Distinguished name from the server certificate.

• allowCipherSuites

This is a comma-delimited list of SSL/TLS cipher suites that should be considered for use.
For valid options, see the Java JSSE documentation corresponding to your JDK version. If not
specified, the JDK default set of cipher suites is allowed.

• allowProtocols

This is a comma-delimited list of SSL/TLS protocols that should be considered for use. For
valid options, see the Java JSSE documentation corresponding to your JDK version. If not
specified, the JDK default set of protocols is used.

• clientAllowCipherSuites

See allowCipherSuites for a description of the format. This parameter sets the cipher suite
requirements only for the initiating side of a connection. If set, it overrides any setting of
allowCipherSuites for the connection initiator.

• clientAllowProtocols

See allowProtocols for a description of the format. This parameter sets the protocol
requirements only for the initiating side of a connection. If set, it overrides any setting of
allowProtocols for the connection initiator.

7/14/2014 Oracle NoSQL Database Security Guide Page 26

Chapter 6. Encryption
Encryption of network data provides data privacy so that unauthorized parties are not able to
view plaintext data as it passes over the network.

Oracle NoSQL Database uses SSL-based encryption to encrypt network traffic between
applications and the server, command line-utilities and the server, as well as between server
components.

Note

JMX access requires the use of SSL. The web Admin interface does not operate over
SSL.

SSL model

Oracle NoSQL Database uses a simple SSL key management strategy. A single, shared, RSA
key is used to protect communication. In this shared key model, you must be sure that there
is a master copy of the security directory and that it gets copied to each server. You should
not run makebootconfig with the -store-security configure option on all servers. Most
servers should have the -store-security enable option specified in their makebootconfig
command.

The shared key has an associated self-signed certificate with a Subject Distinguished Name
that is not server-specific. The automatically-created certificates are generated with the
Distinguished Name: CN=NoSQL.

Each server component listens on SSL interfaces and presents the shared certificate to clients
and other servers that connect to it, as proof of its authenticity. Each client and server
component uses a Java truststore containing a copy of the shared certificate to validate the
certificate presented by servers.

When accessing a NoSQL instance that is secured using SSL/TLS, you must specify at least the
following information:

1. You must specify that the client will connect using SSL. This is done by setting the
security property oracle.kv.transport to "ssl".

2. You must specify the java truststore file that is used to validate the server certificate.
This is done by setting the security property oracle.kv.ssl.trustStore.

For example, to start runadmin in security mode use the following command:

java -Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin

where the file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=login.wallet

Library Version 12.1.3.0 Encryption

7/14/2014 Oracle NoSQL Database Security Guide Page 27

oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Note

If you fail to correctly specify the oracle.kv.transport property or the truststore,
the client will fail to connect to the server.

SSL communication properties

Assuming that the NoSQL server is secured by SSL, client connections from Oracle NoSQL
Database administrative clients will need to connect over SSL as well. This can be achieved by
providing security properties for the connection.

For Oracle-provided command line tools, a security file must be specified. The security
configuration process automatically generates a basic security file (client.security) that
can be used to connect to the store. You may wish to make a copy of this and modify it to
include additional configuration properties.

The minimal configuration needed to connect to a secure store includes setting the following
properties:

• oracle.kv.transport=ssl

Directs KVStore clients and utilities to connect to the KVStore RMI registry via SSL.

• oracle.kv.ssl.trustStore=<path-to-ssl-truststore>

Names a copy of the truststore file generated by makebootconfig or securityconfig to
enable validation of the KVStore server SSL certificate.

Note

You can use SSL to communicate an application with other SSL servers without using
truststore-based certification validation.

In addition to the two properties listed above, the following properties are also supported for
control of SSL communications:

• oracle.kv.ssl.ciphersuites

Specifies a comma-separated list of SSL cipher suites that should be allowed in
communication with the server.

• oracle.kv.ssl.protocols

Specifies a comma-separated list of SSL protocols that should be allowed in communication
with the server.

Library Version 12.1.3.0 Encryption

7/14/2014 Oracle NoSQL Database Security Guide Page 28

• oracle.kv.ssl.trustStoreType

Specifies the type of truststore being used. If not specified, the default type for the Java
runtime is used.

Note

Applications may also set these security properties through API methods on
KVStoreConfig.

7/14/2014 Oracle NoSQL Database Security Guide Page 29

Chapter 7. Configuring Authentication
Authentication means verifying the identity of someone (a user, server, or other entity) who
wants to use data, resources, or applications. Validating that identity establishes a trust
relationship for further interactions. Authentication also enables accountability by making it
possible to link access and actions to specific identities.

Within a secure Oracle NoSQL Database, access to the database and internal APIs is
generally limited to authenticated users. When a secure Oracle NoSQL Database is first
started, there are no users defined, and login to the administrative interface is allowed
without authentication. However, no data access operations can be performed without user
authentication.

User management

Users can be created, modified or removed in the Oracle NoSQL Database through the admin
CLI. Information about a specific user account as well as a summary listing of registered
users can also be displayed. For more information, see the next sections describing each user
management operation.

User creation

Once you connect to a deployed admin, users can be added. The first user created must have
admin rights (permission to perform user creation/modification operations). Use the plan
create-user command to create a new user:

plan create-user -name <user-name>
[-password <password>]
[-admin] [-disable] [-wait]

where:

• -name

Specifies the name of the new user to create. The user name must be non-zero in length
and must be composed of characters in a restricted character set composed of letters,
digits, and underscore.

• -password

Specifies the initial password for the new user. Users are encouraged to provide the
password in response to a console prompt rather than specifying it on the command line.
The use of this argument may be necessary for scripted configuration.

• -admin

Assigns the created user complete system access rights. The first user created must have
admin rights and once that first user is created, there must always be at least one admin
user defined and enabled.

• -disable

Library Version 12.1.3.0 Configuring Authentication

7/14/2014 Oracle NoSQL Database Security Guide Page 30

Creates the user in disabled state. The initial admin user may not be created in a disabled
state. The default state for a newly created user is enabled.

Create an admin user using the plan create-user command with the -admin option. You are
prompted to set the password if it is not provided as an argument:

kv-> plan create-user -name root -admin -wait
Enter the new password:
Re-enter the new password:
Executed plan 7, waiting for completion...
Plan 7 ended successfully

User modification

Use the plan change-user command to modify the specified user account (users without the
-admin option may also change their own password):

plan change-user -name <user-name>
[-disable | -enable]
[-set-password [-password <password>]
[-retain-current-password]
[-clear-retained-password]]

where:

• -name

Specifies the name of the user to modify. The user name must be non-zero in length and
must be composed of characters in a restricted character set composed of letters, digits,
and underscore.

• -disable

Disables the specified account. Disabling an account prevents a user from logging into the
account. It also will cause currently logged-in users to become logged out. The logout of
users is not immediate, but may be delayed by the login cache timeout period, which is
specified through the loginCacheTimeout parameter.

• -enable

Enables the specified account, assuming that it was previously disabled

• -set-password

Changes the password for the specified account (valid only for internal password
authentication).

• -password

Specifies the new password for the new user. Users are encouraged to provide the password
in response to a console prompt rather than specifying it on the command line. The use of
this argument may be necessary for scripted configuration.

Library Version 12.1.3.0 Configuring Authentication

7/14/2014 Oracle NoSQL Database Security Guide Page 31

• -retain-current-password.

For use only in conjunction with -password. If specified, causes the current password
defined for the user to be remembered as a valid alternate password for a limited duration,
or until the password is explicitly cleared. Only one alternate password may be retained at
a time. This option allows a password to be changed via the CLI while an application is still
running without affecting its operation.

• -clear-retained-password.

Erases the current alternate retained password.

Note

If -set-password, -clear-retained-password and -retain-current-password
are all specified in the same command, the current retained password is erased
before considering whether a password is currently retained.

User removal

Use the plan drop-user command to remove the specified user account (users cannot
remove themselves):

plan drop-user -name <user-name>

User status

Use the show user command to display information about the specified user account:

show user -name <user-name>

Use the show users command to display a summary listing of registered users:

show users

User login

You can use either the -username <user> or the -security <path to security file>
runadmin argument to login to the admin CLI:

• -username <user>

Specifies the username to log in as. This option is used in conjunction with security
properties like oracle.kv.transport.

• -security <path-to-security-file>

Specifies the security file that contains property settings for the login. Relative filename
references within the security file are interpreted relative to the location of the
security properties file. For example, if a security properties file contains the setting
oracle.kv.ssl.truststore=client.trust then, the client.trust file should be in the
same directory as the security properties file. If the file is named with an absolute path
then it can be anywhere in the file system.

Library Version 12.1.3.0 Configuring Authentication

7/14/2014 Oracle NoSQL Database Security Guide Page 32

The following properties can be set in the file in addition to any of the SSL communication
properties documented in the previous chapter:

oracle.kv.auth.username
oracle.kv.auth.wallet.dir
oracle.kv.auth.pwdfile.file

where the the oracle.kv.auth.wallet.dir and oracle.kv.auth.pwdfile.file properties in this
file indicate the location of an EE wallet directory or CE password store file, respectively.

Note

The oracle.kv.security Java system property can be used as an alternative
mechanism for providing a security file path. Setting this system property is
equivalent to adding the -security option to the command line. This property is
supported by all tools as well as by the KVStore client library.

Sessions

When a user successfully logs in, it receives an identifier for a login session that allows a
single login operation to be shared across Storage Nodes. That session has an initial lifetime
associated with it, after which the session is no longer valid.

The server notifies the user with an error once the session is no longer valid. The application
then needs to re-authenticate.

Note

The KVStoreFactory API provides a reauthentication handler, which allows
the reauthentication to be completed transparently, except for the delay in
reauthentication processing.

If allowed, the Oracle NoSQL Database client will transparently attempt to extend session
lifetime. For best results, your application should include logic to deal with reauthentication,
as operational issues could prevent it from succeeding initially. In this way, you can avoid the
use of extended logic in your application to reacquire a valid session state.

You can configure the behavior regarding session management to meet the needs of the
application and environment. To do this, you can modify the following parameters using
the plan change-parameters command: sessionTimeout, sessionExtendAllowed and
loginCacheTimeout. For more information, see Security Policy Modifications (page 33)

7/14/2014 Oracle NoSQL Database Security Guide Page 33

Chapter 8. Security Policies
The following default policies in Oracle NoSQL Database may be used to tailor system behavior
to meet your security requirements:

• Login sessions have a limited duration of validity. After that duration has passed, the session
needs re-authentication.

• Session login errors are tracked at the component level. Access to an account for a single
client host is temporarily disabled if too many failed logins occur at that component within
a configurable time duration.

Note

Both of these behaviors can be customized by modifying the values of their
respective security parameters. For more information, see the following section.

Security Policy Modifications

You can use the plan change-parameters command in order to change a security policy in
the system:

plan change-parameters -security <id>...

Security parameters are applied implicitly and uniformly across all SNs, RNs and Admins.

The following security parameters can be set:

• sessionTimeout=<Long TimeUnit>

Specifies the length of time for which a login session is valid, unless extended. The default
value is 24 hours.

• sessionExtendAllowed=<Boolean>

Indicates whether session extensions should be granted. Default value is true.

• accountErrorLockoutThresholdInterval=<Long TimeUnit>

Specifies the time period over which login error counts are tracked for account lockout
monitoring. The default value is 10 minutes.

• accountErrorLockoutThresholdCount=<Integer>

Number of invalid login attempts for a user account from a particular host address over
the tracking period needed to trigger an automatic account lockout for a host. The default
value is 10 attempts.

• accountErrorLockoutTimeout=<Long TimeUnit>

Time duration for which an account will be locked out once a lockout has been triggered.
The default value is 30 minutes.

Library Version 12.1.3.0 Security Policies

7/14/2014 Oracle NoSQL Database Security Guide Page 34

• loginCacheTimeout=<Long TimeUnit>

Time duration for which KVStore components cache login information locally to avoid the
need to query other servers for login validation on every request. The default value is 5
minutes.

7/14/2014 Oracle NoSQL Database Security Guide Page 35

Chapter 9. Keeping Oracle NoSQL Database
Secure

This chapter provides a set of guidelines to keep your Oracle NoSQL Database secure. To
maximize the security features offered by Oracle NoSQL Database, it is imperative that the
database itself be well protected.

Security guidelines provide advice about how to configure Oracle NoSQL Database to be secure
by recommending security practices for operational database deployments.

Guidelines for Securing the Configuration

Follow these guidelines to keep the security configuration secure:

• The initial security configuration should be generated on a host that is not intended for
KVStore operational use, using the securityconfig create config command.

• SNs should be deployed by running makebootconfig with the -store-security enable
argument. The configured security directory from the reference host should be copied to
the new Storage Node KVROOT using a secure copy mechanism prior to starting the store.

• The security configuration should be kept in a protected location for future use.

• Updates to the security configuration should be performed on the configuration host and
copied to the operational SN hosts using a secure copy mechanism.

• After the first user is configured but before allowing applications to use the store, you may
wish to restart all SNA processes on hosts running Admin processes and then use the Admin
CLI show users command to ensure that there is only the single user definition that is
expected. This step validates that no other user creation occurred during the period when
administrative login was not required.

Guidelines for Deploying Secure Applications

Follow these guidelines when deploying your Oracle NoSQL Database and if the properties
include oracle.kv.auth.wallet.dir in order to use Oracle wallet to hold a user password:

• The kvstore-ee.jar file needs to be included in the application classpath.

• The kvstore-ee.jar, oraclepki.jar, osdt_cert.jar, osdt_core.jar files should all
be made available on the application machine.

Note

kvstore-ee references the other files, so they do not need to be included in the
classpath explicitly.

Guidelines for Securing the SSL protocol

Follow these guidelines to keep the SSL protocol secure:

Library Version 12.1.3.0 Keeping Oracle NoSQL Database Secure

7/14/2014 Oracle NoSQL Database Security Guide Page 36

• When configuring SSL communication for your store, you should consider both performance
and security.

• For a more secure store you should opt for higher security where possible.

• The Oracle JDK 7 support TLSv1.2 as an SSL protocol level, whereas JDK 6 provides only
TLSv1 as its highest protocol level.

• If you are currently using JDK 6, it is strongly recommended that you upgrade to JDK 7.

Guidelines for using JMX securely

Follow these guidelines to securely use your Java Management Extensions (JMX) agent:

• If you enable JMX for a secure store, your JMX monitoring application must access the store
using SSL.

• You should consult the configuration details for the JMX product you wish to use. In this
case, you can use jconsole with a secure store by running the following command:

jconsole -J-Djavax.net.ssl.trustStore=/home/nosql/client.trust \
node01:5000

where node01 is the registry host to be monitored and 5000 is the registry port configured
for the Storage Node.

Guidelines for Updating Keystore Passwords

Follow these steps to update the keystore passwords:

1. In the security directory on the configuration host run the keytool command. The
keytool prompts for the current password and then for a new password to set.

keytool -storepasswd -keystore store.keys

2. If using a Password File store, skip ahead to the next step. To update the keystore
password for wallets, use the following command:

java -jar KVHOME/lib/kvstore.jar securityconfig \
wallet secret -directory store.wallet -set -alias keystore

Securityconfig will prompt for the new password. The new password should match the
new one provided earlier to the keytool command.

3. If using Password File stores instead of wallets, use the following command to update the
keystore password:

java -jar KVHOME/lib/kvstore.jar securityconfig \
pwdfile secret -file store.pwd -set -alias keystore

Securityconfig will prompt for the new password. The new password should match the
new one provided earlier to the keytool command.

Library Version 12.1.3.0 Keeping Oracle NoSQL Database Secure

7/14/2014 Oracle NoSQL Database Security Guide Page 37

4. Copy the updated store.keys file and either store.pwd or the contents of store.wallet
to the security directory on each host and restart the Storage Node using the following
commands:

java -jar KVHOME/lib/kvstore.jar stop -root KVROOT

java -jar KVHOME/lib/kvstore.jar start -root KVROOT&

Guidelines for Updating the SSL key/certificate

Follow these steps to update the SSL key/certificate:

1. On the configuration host, run securityconfig to create a new configuration in a directory
in parallel to the standard configuration directory.

2. On the configuration host, merge the truststore entries by using the config merge-
trust command:

java -jar KVHOME/lib/kvstore.jar securityconfig \
config merge-trust -root <standard config dir> \
-source-root <new config dir>

3. In the security directory on the configuration host run the keytool command. The
keytool prompts for the current password and then for a new password to set.

keytool -storepasswd -keystore store.keys

Securityconfig will prompt for the new password. The new password should match the
new one provided earlier to the keytool command.

4. If using a Password File store, skip ahead to the next step. To update the keystore
password for wallets, use the following command:

java -jar KVHOME/lib/kvstore.jar securityconfig \
wallet secret -directory store.wallet -set -alias keystore

Securityconfig will prompt for the new password. The new password should match the
new one provided earlier to the keytool command.

5. If using Password File stores instead of wallets, use the following command to update the
keystore password:

java -jar KVHOME/lib/kvstore.jar securityconfig \
pwdfile secret -file store.pwd -set -alias keystore

Securityconfig will prompt for the new password. The new password should match the
new one provided earlier to the keytool command.

6. Copy the updated store.keys file and either store.pwd or the contents of store.wallet
to the security directory on each host and restart the Storage Node using the following
commands:

java -jar KVHOME/lib/kvstore.jar stop -root KVROOT

Library Version 12.1.3.0 Keeping Oracle NoSQL Database Secure

7/14/2014 Oracle NoSQL Database Security Guide Page 38

java -jar KVHOME/lib/kvstore.jar start -root KVROOT&

Guidelines for Operating System Security

Follow these guidelines regarding operating system security:

• There should be a single user identity that runs the KVStore software.

• The KVStore user should be in its own group, independent of other users.

• JE log files, audit log files, and password stores should have mode 0600 on Linux/UNIX
platforms with equivalent settings for Windows systems. The simplest way to achieve this on
Linux/UNIX is to set an umask of 0077.

• Security configuration files must be write-protected.

• The KVROOT directory and the security directory must be protected from modification by
other users. On UNIX/Linux this should include having the sticky bit (01000) set in order to
prevent renaming and deletion of files/directories.

• Access to the systems that are running KVStore should be limited in order to avoid the risk
of tampering.

Note

Access protections do not guard against users who have sufficiently elevated access
rights (for example, the UNIX root user).

7/14/2014 Oracle NoSQL Database Security Guide Page 39

Appendix A. SSL keystore
generation

The keystores (store.keys and store.trust) that are automatically generated by
makebootconfig or securityconfig can also be manually created using the following keytool
commands:

To generate the keypair, use the keytool -genkeypair command:

keytool -genkeypair \
-keystore store.keys \
-storepass <passwd> \
-keypass <passwd> \
-alias shared \
-dname "CN=NoSQL" \
-keyAlg RSA \
-keysize 1024 \
-validity 365

To export the keypair, use the keytool -export command:

keytool -export \
-file <temp file> \
-keystore store.keys \
-storepass <passwd> \
-alias shared

To import the keypair, use the keytool -import command:

keytool -import \
-file <temp file> \
-keystore store.keys \
-storepass <passwd>
-noprompt

You can also use the keytool commands described above to manually generate other keystore
and truststore keys and substitute them for the ones that Oracle NoSQL Database generates,
provided you adhere to the following rules:

• The store.keys file should have a key pair with the alias "shared".

• The store.keys store password (-storepass) must match the key password (-keypass)

• If a subject distinguished name other than CN=NoSQL is chosen for the self-signed
certificate, then you must specify the following options to the makebootconfig or
securityconfig command:

-param "ha:serverIdentityAllowed=dnmatch(SOMEDN)"
-param "ha:clientIdentityAllowed=dnmatch(SOMEDN)"

Library Version 12.1.3.0 SSL keystore generation

7/14/2014 Oracle NoSQL Database Security Guide Page 40

-param "internal:serverIdentityAllowed=dnmatch(SOMEDN)"
-param "internal:clientIdentityAllowed=dnmatch(SOMEDN)"
-param "client:serverIdentityAllowed=dnmatch(SOMEDN)"

where SOMEDN is the distinguished name (-dname) chosen.

• The store password for store.trust should match the store password for store.keys.

7/14/2014 Oracle NoSQL Database Security Guide Page 41

Appendix B. Third Party Licenses
All of the third party licenses used by Oracle NoSQL Database are described in the
LICENSE.txt file, which you can find in your KVHOME directory.

	Oracle NoSQL Database Security Guide
	Table of Contents
	Preface
	Conventions Used in This Book

	Chapter 1. Introducing Oracle NoSQL Database Security
	Chapter 2. Security Configuration
	Security Configuration Overview
	Configuring Security with Makebootconfig
	Configuring Security with Securityconfig
	Creating the security configuration
	Adding the security configuration
	Removing the security configuration
	Merging truststore configuration

	Chapter 3. Performing a Secure Oracle NoSQL Database Installation
	Single Node Secure Deployment
	Adding Security to a New Installation
	Adding Security to an Existing Installation

	Multiple Node Secure Deployment
	Adding Security to a New Installation
	Adding Security to an Existing Installation

	Chapter 4. External Password Storage
	Oracle Wallet
	Password store file

	Chapter 5. Security.xml parameters
	Top-level parameters
	Transport parameters

	Chapter 6. Encryption
	SSL model
	SSL communication properties

	Chapter 7. Configuring Authentication
	User management
	User creation
	User modification
	User removal
	User status
	User login

	Sessions

	Chapter 8. Security Policies
	Security Policy Modifications

	Chapter 9. Keeping Oracle NoSQL Database Secure
	Guidelines for Securing the Configuration
	Guidelines for Deploying Secure Applications
	Guidelines for Securing the SSL protocol
	Guidelines for using JMX securely
	Guidelines for Updating Keystore Passwords
	Guidelines for Updating the SSL key/certificate
	Guidelines for Operating System Security

	Appendix A. SSL keystore generation
	Appendix B. Third Party Licenses

